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ABSTRACT

In recent years, research in recommender systems has turned away from the accurate prediction of rat-

ings, to objectives that focus on the properties of the lists of recommended items. One of these is

aggregate diversity - a measure that compares the relative number of times different items are recom-

mended across users in the system. This is a relatively unexplored objective and prior works primarily

use item coverage as a metric to evaluate aggregate diversity. In this project, we propose a new metric

- intersection distance to evaluate the aggregate diversity of a recommender system and demonstrate its

advantages over other possible metrics such as coverage or entropy. We also propose a range of tech-

niques to generate recommendation lists for users that optimize intersection distance, given ratings from

a standard recommender system, including simple item-selection heuristics, mathematical re-ranking

methods and a gradient-based solution.
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CHAPTER 1

Introduction

1.1 Motivation

Recommender systems are a class of web applications that aim to predict user responses to actions.

They have become fairly ubiquitous today with the advent of online shopping sites such as Amazon

and Flipkart. Such systems are also popularly used to recommend content, such as movies, videos,

music and news. The most common model used in recommender systems involves the estimation of a

utility matrix - there are two classes of entities, generally referred to as users and items, and the system

estimates a utility for a user-item pair. In most cases, the utility corresponds to a rating on a fixed scale

and is learned from past ratings of users for items [31].

Traditionally, recommender systems have focussed only on improving the accuracy of predicted rat-

ings. This was particularly influenced by the fact that one of the largest spurts in recommender systems

research was caused by the Netflix Prize - a competition that required participants to design a recom-

mender system for predicting ratings of users for movies, based on data from Netflix - an online DVD

rental and video streaming service. The goal of the task was to solely minimize the root mean squared

error between the predicted and known ratings.

However, studies such as those by Mc Nee et al [27] show that this approach based solely on ratings

is not sufficient to make recommender systems useful or satisfying to customers. For example, a travel

recommendation system that only ranks places you have already visited or a movie recommendation

system that only displays the most popular blockbusters is not likely to be very useful to a customer.

To address this issue, researchers have expanded their focus to optimize other objectives in conjunction

with rating accuracy. These typically measure the goodness of the list of items recommended to a user.

Some commonly studied objectives in this regard include the diversity of the list, which examines some

measure of dissimilarity among recommended items, novelty, which tries to measure how different is an

item with respect to what the user already knows and serendipity, which measures the system’s ability

to recommend to the user items that he/she would not have been able to find in its absence. [8, 22, 43]

A commonly studied direction is the user’s perspective of diversity which aims at increasing the dis-



similarity between items in the recommendation list of a user. [22, 43]. This view is based on the

intuition that users typically have a number of preferences and would prefer items satisfying a mix of

these. Variety prevents people from getting bored with the class of items typically recommended to

them, causing them to use the system longer. While the vast majority of the literature has focused on

the user’s perspective of diversity, the equally important notion of aggregate diversity has not received

much attention. Aggregate diversity refers to the system’s perspective of diversity, measuring the relative

number of times different items get recommended [1].

Consider the recommendation system for an online store, which recommends products to users. It is

well known that the sales of products typically show a long tail behaviour, as in figure 1.1.

Figure 1.1: Long tail distribution seen in online marketplaces a

aSource: http://organicmedialab.com/2013/01/30/3-dimensions-of-smart-economy/

The owners of the store would like to see their niche products bought by a reasonable number of cus-

tomers. By increasing the fraction of times such items get recommended, the system is more likely to be

able to help users to find items they would otherwise not have come across, increasing user satisfaction

and ensuring sales of more available products. This could potentially increase both users’ interest in the

system and the percentage of conversions from browse to purchase.

Alternately, consider the requirements of the owner of a movie rental service. Here, the seller has a

certain number of DVDs and would like, at any point of time, to have as many of them rented out as

possible. If a small number of very popular movies are being demanded by a lot of users, many of them

are unlikely to be able to rent the movie they desire and hence may choose to switch to another service.

However, if the less popular DVDs are also recommended to users, there is a higher chance that some

users would choose these instead and hence reduce the competition for the more popular DVDs. This

would also, as in the product recommendation case, be likely to be better able to cater to the desires of

users with niche tastes.
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Consider a different domain - the recommendation of papers to be reviewed, to experts. In this case,

having a high aggregate diversity would imply that all papers get recommended roughly equal number

of times. This would ensure that papers get reviewed in a load-balanced manner. Here, to ensure that a

paper gets a sufficient number of reviews, it may even be desirable to recommend it to experts who are

not perfectly aligned with the topic discussed in the paper.

One of the early works to demonstrate the importance of aggregate diversity is that of Fleder et al.[18],

that examined the effects of generalized recommendation models on aggregate diversity (there referred

to as sales diversity), as measured by the Gini Index. Zhang et al. [39] also use a two phase model of a

recommendation system, that separates the tasks of rating prediction and formation of recommendation

lists, to demonstrate the usefulness of randomized methods to improve the recommendation diversity.

A trivial way to increase the aggregate diversity of a recommender system is to provide random rec-

ommendations. However, such a system is unlikely to provide recommendations that are relevant for

users. Aggregate diversity needs to be optimized in conjunction with a suitable measure of relevance

to ensure that the resultant recommendation system is useful. Some works that examine this problem

include those by Adomavicius et al [1, 2], that directly optimize the coverage of a recommender system,

that is, the total number of items recommended at least once.

1.2 Contributions of this project

Due to its ease of computation and natural links with the idea of aggregate diversity, coverage has been in

use as a metric for aggregate diversity. Some alternatives would be probability-based measures such as

entropy or Gini impurity. In this work, we show that these measures do not satisfy some basic properties

that we would expect to be satisfied by a metric for aggregate diversity. The primary contributions of

this work are -

• A metric for aggregate diversity based on the histogram intersection distance [12], which is a
special case of the Earth Mover’s distance [33]. This metric does not suffer from the drawbacks
faced by probability-based measures.

• Algorithms for optimizing aggregate diversity based on the intersection distance. We empirically
demonstrate that the algorithms proposed outperforms standard baselines for the task.

To the best of our knowledge, apart from Adomavicius et al. [2], this is the only work to optimize

aggregate diversity directly. Further, this is the first method to optimize intersection distance.

3



1.3 Outline

In the next chapter, we present a short survey of works in literature relevant to this project. Following

this in chapter 3 is a justification of the need for a new metric for aggregate diversity and a discussion of

the properties that make intersection distance suitable for the task. Chapter 4 introduces some first-cut

approaches to improving the intersection distance of recommender systems. In chapter 5, an alternate

direction that was explored, that attempted to use ideas from uctions to solve this problem, are outlined.

Following this, in chapter 6, we describe two improtant solution approaches that cast the problem of

optimizing intersection distance as a min cost flow problem. The solution approaches in chapters 4-6

are two phase methods. In the first phase, they make use of a baseline recommender to obtain predicted

ratings for user-item pairs. The main method involves ordering items appropriately into recommendation

lists for users of high aggregate diversity without compromising on relevance. However, in chapter 7,

we suggest an alternate approach - optimizing the parameters of a recommender system directly so that

the lists obtained from it have high relevance and diversity. Finally chapter 8 outlines our conclusions

and some directions for future work.
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CHAPTER 2

Literature Review

2.1 Diversity in Data Mining Tasks

Diversity is a requirement of many tasks in data mining. A class of applications in which there has been

considerable emphasis on diversity is web search. These tasks take a query as input from the user and

return a list of items (documents, links, products) relevant to the query. Typically this list is sorted in

decreasing order of relevance. The need for diversity of search results is primarily because the intent

behind a query is often ambiguous. A diverse set of results is more likely to provide at least one item the

user actually intended to retrieve via the query. Typically, users need only one or two relevant results. So

it is desirable to produce results that are relevant for different interpretations of the query. Here, increase

of diversity can be also viewed as redundancy penalization [3, 14].

In the thesis by Sandoval [36], an attempt is made to extend techniques and metrics that enhance di-

versity in web search to recommendations. Specifically, they use variants of MMR [10] and IA-Select

[3] to increase diversity. In web search, diversity is typically associated with subtopics, categories or

intents. To have an equivalent concept in recommendation systems, they define an Aspect space, which

can contain information about item features, additional contextual information or make use of latent

features obtained by matrix factorization of the utility matrix. This formulation is found to result in

good performance according to a known baseline metric - expected intra-list similarity [43]. However,

this interpretation of diversity is from a user’s perspective. From the system’s perspective, as it is not a

ranked list being evaluated, the generalization of web search measures is not as straightforward.

Another notion of diversity can be seen in search tasks on graphs. Such tasks typically have to identify

nodes of high importance, as indicated by the network structure. The most well-known such measure

of is PageRank. However, some tasks require the identification of nodes that are sufficiently important

but also spread out in the graph. Here, the notion of diversity is used to indicate that the returned nodes

should not be neighbours and in fact should be reasonably well-separated from each other in the graph

[28, 42]. However, this is not easily extendable to recommendation systems.



2.2 Diversity and novelty in Recommendation Systems

Diversity in recommender systems has attracted a significant amount of interest in recent years. The

perspective of diversity considered in a majority of these works is the user’s perspective, which aims

at increasing the dissimilarity between items in the recommendation list of a user. This is done in a

number of ways, from re-ranking strategies to minimizing a weighted combination of relevance and

diversity metrics [22, 40] to extending techniques used in the diversification of web search results to

recommender systems [11, 38].

A survey by Nguyen et al. [30] examines diversity in content recommended to a user over time to

check for the presence of the filter bubble effect in MovieLens data. The filter bubble effect refers to

the potential of online personalization to isolate people from a diversity of viewpoints (or content). The

authors wished to check whether the recommendations received and content consumed became more

narrow with time. Movies are represented by a tag genome - a vector where each dimension corresponds

to a user-defined tag and the feature value of a movie along that dimension is the relevance of the tag

to the movie. Content diversity is then measured as the average pairwise distance between movies in a

list. Also, user satisfaction is measured using average rating. They assume that a recommendation is

responsible for a rating if it is between 3 hours and 3 months before the rating. According to this model,

they divide people into those who follow recommendations and those who do not. They observe a drop

in recommendation diversity and correspondingly, that of consumed content accompanied by a drop in

average rating.

Another persepective on diversity can be seen in the work of Lathia et al. [25]. This checks for the pres-

ence of temporal diversity in recommendations made by collaborative filtering, measured by the overlap

of recommendations made using ratings up to a certain time-stamp, for many consecutive windows. It

was observed that kNN-based recommender systems had the highest temporal diversity. Another un-

surprising observation was that a user was more likely to observe diverse results if he/she returned to

the system after a long gap. The authors suggest alternating between recommendation algorithms for

consecutive time windows or random re-ranking as solutions to this issue.

In the work of Kawame et al. [24], an attempt is made to improve the serendipity of the system, that is,

they try to increase the number of items recommended that the user would struggle to find without the

aid of the system. This is done by identifying and following innovators - users who tend to be the first to

try out a new item. They also identify novel items by estimating the probability of buying one item after

buying another. It is found that these techniques also improve the diversity of the system as measured

6



by Gini coefficient, item and user coverage.

2.3 Aggregate Diversity in Recommendation Systems

A compelling justification for the importance of examining aggregate diversity as a metric for recom-

mendation systems can be seen in [18]. They use a ball-in-urn model to simulate the effects of some

common recommendation paradigms and prove that these typically result in highly unbalanced sales - as

measured by the Gini index. The model is extended to a full fledged user and item model which studied

by simulation. It was seen that even on this model, sales showed a very poor Gini index.

Another work that demonstrates the importance of improving aggregate diversity is that of Zhang et

al. [39]. Diversity here is measured in terms of the concentration index - a measure similar to the Gini

index. They model recommendation systems as two phase systems. The first phase computes a similarity

value between an item and user (utility/rating) and the second phase is a suitable probabilistic model that

determines whether or not to recommend an item, given its similarity value. They suggest randomization

methods and increasing the number of items recommended to a user as solutions to improve diversity.

A first-cut attempt at improving aggregate diversity can be seen in Adomavicius et al. [1]. Here, the

top-M items in a user’s list are suitably re-ranked so that the top-N , (N < M ) are sufficiently diverse

across users. Relevance of the ratings is maintained by placing a threshold on the predicted rating

for the item by the user. The suggested methods use a decrease in average rating, number of rates,

awareness, or relative variants of these indicators to determine that the item is less well-known and

hence, diverse. Diversity was measured in terms of the number of items and the number of long tail

items recommended. In [2], a more formal solution to the problem was proposed, making use of a max

flow problem to provably maximize item coverage.

2.4 Diversity Metrics in Literature

The choice of diversity metric depends strongly on the application being considered. Although there

have been attempts to derive a uniform class of metrics, many are still in use. A detailed assessment of

the same is present in the thesis of Sandoval [36]. They can be broadly classified as -

• Those that assume that the topic(s) a query refers to can be divided into dsitinct subtopics and aim
to maximize the number of subtopics that get listed in the top results. These include number of
subtopics, subtopic precision, subtopic recall and weighted subtopic precision

7



• Metrics that penalize redundancy in search results, such as α-nDCG.

• Intent-Aware metrics - These aim to generalize more standard search metrics to cover the possible
intents of a query.

Text summarization is also seen as a common platform for evaluating the diversity of search methods.

The technique is used in an information-retrieval based text summarization system and the quality of the

resultant summary is assumed to be better if the search results are more diverse [10, 28, 42]. Variants of

coverage are also popular as a measure of diversity [28].

Diversity can also be measured using measures of inequality found in economics. These are outlined

in the technical report by Travis Hale [20]. Some basic measures include the range of values, range

ratio and the McLoone’s index. These do not capture much information about the distribution of values.

The coefficient of variation calculates the ”peakedness” of a distribution but since it is unbounded, it is

practically difficult to determine what is a ”good” value when using this metric. Some other measures

such as the Gini index and the Theil’s T statistic are similar to search diversity metrics. It is also possible

to assign different weights to different parts of the distribution using measures such as the Atkinson’s

index and the Generalized Entropy Measure. However, these are cumbersome to compute and optimize.

The choice of parameters becomes an additional problem.

2.5 Earth Mover’s Distance

Earth Mover’s Distance (EMD) was first introduced as a metric by Rubner et al. in [33]. EMD is a

distance measure between two histograms/distributions that attempts to calculate the minimal amount of

work that must be performed to transform one distribution into the other by moving distribution mass

around. It is defined using the solution to the following transportation problem - say we have a ground

distance measure cij between the ith component of the first histogram x and the jth component of the

second histogram y. Find the matrix F ∗ of flows that is the optimal solution to -

min
F

∑
i

∑
j

cijfij∑
j

fij = xi ∀ i∑
i

fij = yj ∀ j

fij ≥ 0 ∀ i, ∀ j

8



Then,

EMD(x, y) =

∑
i

∑
j cijf

∗
ij∑

i

∑
j f
∗
ij

=

∑
i

∑
j cijf

∗
ij∑

i yi
(2.1)

EMD is a popular metric for image processing applications. Since it has a relatively generic formulation,

it can be used to examine many vector transformations. For example, in Cohen et al. [15], they attempt

to compute a transformation to a distribution that minimizes its EMD to another, using an EM-like

algorithm. This is motivated by problems in image matching, where external factors that prevent two

images of the same object from being exact matches of each other transform the features of the image

in a fixed manner.

Cha et al. [13] consider a special case of EMD, called Minimum Difference of Pairwise Assignments,

motivated by the fact that vector-based distance measures such as Lp norms and probabilistic measures

like KL-divergence, Bhattacharya distance and Matusita distance only examine the overlapping portions

of the histograms. EMD can examine non-overlapping portions of distributions but it is generic and

requires solving a transportation problem. For MDPA, closed form expressions can be obtained that can

be computed in polynomial time. These expressions are derived as follows. Each histogram is viewed as

a multiset of measurements. If the bin height is h for a bin of value v, the multiset will have h instances

of value v and so on. Elements from the two sets are then grouped in pairs such that the sum of pairwise

distances is minimized. This minimum sum of pairwise distances is the MDPA. MDPA is metric and

there exists a method of normalizing MDPA for histograms not of the same length. The authors also

propose polynomial-time algorithms for calculating MDPA for different types of histograms. The also

show that for nominal histograms, the MDPA is the histogram intersection distance [12], which is equal

to half the l1 distance between the two histograms.

2.6 Parameterized Recommendation Systems

A number of recommendation systems assume that ratings are functions of some suitable parameters,

thus reducing the task of the system to identify that set of parameters which best fit the known ratings.

These methods use different functions - deterministic or probabilistic, attempt to minimize different

error terms and use different techniques to optimize parameters. A commonly used class of models is

the class of matrix factorization-based models. In these models, the rating matrixR of dimensionM×N

is assumed to be equal to the product of two matrices - a user factor matrix U of dimension M ×K and

an item factor matrix V of dimension N × K, that is, R = UTV . The singular value decomposition

9



(SVD) gives the best such K-rank approximation to R in terms of squared error. However, due to the

presence of missing entries inR, the matrices U and V have to be learnt by techniques such as stochastic

gradient descent (SGD) [6].

However, methods such as SGD are prone to overfitting. Generative models, which assume a probabilis-

tic model for ratings, attempt to overcome this defect. One of the simplest such methods is Probabilistic

Matrix Factorization [34]. A rating is assumed to be normally distributed around the value obtained

using standard matrix factorization. The parameters are learnt my maximizing the log-likelihood of the

known ratings. This was then extended in [35] by adding Gaussian priors to the user and item factors,

whose parameters then become the ones to be learnt. Further, instead of a standard variational method,

this work makes use of Gibbs sampling to optimize parameters.

An example of how parameterization of a recommendation system has been exploited to optimize rank-

ing is the work on Bayesian Personalized Ranking by Rendle et al. [32]. They try to address the fact

that standard recommendation techniques such as Matrix Factorization or Adaptive kNN are optimized

for the task of rating prediction, not item ranking. They aim to learn a total ranking >u over all items

for each user u. It is assumed that all observed items are preferred over all non-observed items to obtain

a posterior probability of the system parameters to maximize. That is, if Θ is the set of parameters of

the underlying recommendation model, then the optimal ranking is the one that maximizes Pr(Θ |>u).

This criterion is optimized by stochastic gradient descent on the parameters Θ.

2.7 Auctions

During the course of this project, a couple of attempts were made to model the problem of aggregate

diversity in recommendation systems as an auction. This would enable the use of results from game

theory to provide guarantees.

In the simplest auction model, there are a number of bidders and a single good. Two broad classes of

auctions are efficient and optimal auctions. Efficient auctions aim to sell the good to the bidder with

maximum valuation for it whereas optimal auctions attempt to sell the good in such a manner that the

seller’s revenue gets maximized [37].

A multi-unit auction differs from an ordinary auction only in that instead of one good to be sold, there

are k identical units of a good to be sold. Bidders are allowed to bid for any number of units up to k.

When all bidders demand only a single unit, a generalized second price auction is efficient. Some other

10



popular multi-unit auctions are the sequential auction and the random sampling optimal single price

auction [37].

In the case of combinatorial auctions, there are M different bidders and N different goods. Any bidder

can bid for any combination of goods. The Winner Determination Problem (WDP) - identifying the

bidders to which each good must be sold to result in efficiency, in a combinatorial auction, is reducible

to the Set Packing problem and is hence NP-complete. It cannot even be approximated uniformly.

However, some special combinatorial auctions have a WDP that reduces to a linear program that can be

solved in polynomial time [37].

One such tractable subclass of combinatorial auctions is multi-item auctions. Here, there is a constraint

that every bidder can receive at most one item. Thus, bidders place bids only on individual items. The

work of Demange et al. [16] designs a mechanism to find an equilibrium price vector - a vector of prices

for each item such that every bidder can either be assigned some item which gives them maximum

positive surplus or does not have any item which results in positive surplus and all unsold items are

priced at their reserve price. The algorithm in fact finds the minimal such vector, that is no price can

be decreased without loss of equilibrium. A computationally more efficient approximate solution is also

provided, which is additive Bδ-approximate where B is the maximum number of bidders and δ is a

parameter.

There are many works that provide approximate solutions for different classes of combinatorial auctions.

One such work is that of Bartal et al. [5]. This deals with multi-unit combinatorial auctions - auctions

where there are n different goods and ki units for each good i. The paper examines a special case of such

auctions where for each item, there are k units and a bidder either wants 0 units or x ∈ [θ,Θ] units. This

covers the case where a bidder wants at most one unit of each item. They show that approximating the

WDP to within a factor ofO
(
n

1−ε
k+1

)
is NP-hard by a reduction from the Maximal Independent Set prob-

lem. They also propose an approximate algorithm with a good approximation ratio of O
(

1
Θ

(
n
θ

) Θ
1−2Θ

)
,

which simplifies to O
(
kn

1
k−2

)
in the case of k-duplicates (exactly k units of each item).

Another is the work of [26] which deals with a branch and bound solution for multi-unit combinatorial

auctions. The algorithm, CAMUS, aims to find the solution for an optimal auction - one that maximizes

revenue for the seller. Being a branch and bound solution, it is exponential in the worst case but was

found to work well experimentally.

In auctions, it is often desirable to introduce budgets for bidders as this better models the real-life sce-

nario. One such attempt is by Fiat et al. [17]. Their auction setup is as follows - there are n distinct
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items, each bidder a is interested in a set of items Sa, has the same valuation va for every item in this

set and a budget ba. In this setting, they find a Pareto optimal allocation of items, with associated prices.

The solution is Pareto optimal in the sense that there is no other allocation and price combination for

which all bidders have at least the same surplus (total valuation - total price) and the seller gets at least

the same revenue and at least one bidder’s surplus or the seller’s revenue strictly improves.

2.8 Order Statistics of Probability Distributions

Given random variables X1, X2, . . . Xn, the k-th order statistic is the k-th smallest of these values.

There are results for calculating the order statistics of IID random variables or non-identical uniformly

distributed variables. However, in parameterized recommendation systems, we typically deal with non-

identical Gaussian random variables. Some works that deal with such variables include that of Nadarajah

et al. [29] which gives a formula for the PDF of the max and min of 2 normal random variables (nei-

ther independent nor identical). Bromiley et al. [7] demonstrate how to obtain the PDF of a product of

non-identical independent random variables and perform convolutions on them. Other works are more

generic, such as those of Cao et al. [9] and Balakrishnan et al. [4]. The former derives a recurrence rela-

tion that can be used to obtain successive order statistics of independent, non-identical random variables

and the latter proves some identities followed by distributions of order statistics of non-independent,

non-identical random variables. However, these are difficult to adapt to some distributions. An approx-

imate solution is found in the work of Janjoom et al. [23]. They approximate the Gamma and Normal

random variables using the Burr type XII distribution and hence derive expression for single moments

of their order statistics.
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CHAPTER 3

A Metric for Aggregate Diversity

The goal of aggregate diversity is to measure the extent to which different items get recommended by a

system. A metric to evaluate aggregate diversity must consider

1. A system that recommends more items to be more diverse than one that recommends fewer items.

2. A system that recommends most items only to one or two users to be less diverse than one which
recommends many items to a large fraction of users

The first condition is a natural requirement associated with the notion of aggregate diversity. To under-

stand the necessity of the second condition, consider the viewpoint of an online retailer. If a product

is recommended to only one user, it is quite possible that he/she may not buy it. Recommending it to

more users increases the probability that some user buys the product. Thus it is necessary that a recom-

mender system achieves a more equitable distribution over the number of recommendations of different

products.

3.1 Need for a Different Metric for Aggregate Diversity

Coverage, defined as the total number of items recommended across all users, has been used in literature

as a measure of aggregate diversity. However, consider the following example - there are two systems

each of which have an inventory of 100 items. The first recommends one item to all users and the

remaining 99 to only one user each. The second system recommends each item to 5 users. Coverage

will not be able to differentiate between the two systems but the second system is preferable according

to the second requirement discussed for aggregate diversity. Thus although coverage is necessary for

high diversity, it is not sufficient.

A possible solution to this drawback is to use a metric like Gini impurity of the normalized vector

of the number of times each item gets recommended, henceforth referred to as the normalized count

vector. An entry corresponding to an item in this vector can be interpreted as the probability that it gets



recommended to some user. The Gini impurity for a probability distribution p is given by [21] -

Gini(p) = 1−
∑
i

p2
i (3.1)

A higher Gini impurity score is indicative of increased diversity. However, a simple example can be

used to show that a system of higher coverage need not receive a higher score. Consider the case when

there are five items and two systems give the following normalized count vectors - [0.5, 0.5, 0, 0, 0] and

[0.75, 0.24, 0.01, 0, 0], whose respective Gini impurity scores are 0.5 and 0.3798. The first system is

declared as more diverse, despite the second system having a higher coverage of three items, as opposed

to the two items recommended by the first system.

Information theoretic metrics such as the entropy of the normalized count vector also appear to be an

intuitive choice of metric for aggregate diversity. A high entropy would indicate that the vector is close

to the uniform distribution and hence has high aggregate diversity. The entropyH of a probability vector

p is given by

H(p) = −
∑
i

pi log2 pi

However, for the same example, the entropy of the first system is 1 but that of the second is a lower value

of 0.87, even though it has a higher coverage. Thus neither Gini index nor entropy satisfy the required

criteria.

Another possible probability-based metric for aggregate diversity is the KL divergence of the normalized

count vector with respect to the uniform distribution, given by,

KLD(p||q) =
∑
i

pi ln
pi
qi

KLD(p||q) is defined only if qi = 0 ⇒ pi = 0 ∀ i. As recommendation systems rarely have full

coverage, it is necessary to use the uniform distribution as q. Then if n is the number of items available,

KLD(p||q) =
∑
i

pi ln

(
pi
qi

)
=
∑
i

pi ln

(
pi

1/n

)

= ln(n)
∑
i

pi + ln(2)

(∑
i

pi log2 pi

)
= ln(n)− ln(2)H(p)
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Thus, if a distribution has higher entropy, it will also have lower KL divergence to the uniform distribu-

tion. However, the earlier example is a case where a system of lower entropy is to be identified as more

diverse. This cannot be done using KL divergence.

3.2 Earth Mover’s Distance and Histogram Intersection Distance

The Earth Mover’s Distance (EMD) is a distance measure between two histograms/distributions that

attempts to calculate the minimal amount of work that must be performed to transform one distribution

into the other by moving distribution mass around [33]. It is defined using the solution to the following

transportation problem. Given a ground distance measure cij between the ith component of the first

histogram x and the jth component of the second histogram y. Let F ∗ be the optimal solution to the

following optimization problem in the matrix F , with elements fij

min
F

∑
i

∑
j

cijfij∑
j

fij = xi ∀ i∑
i

fij = yj ∀ j

fij ≥ 0 ∀ i, j

Then,

EMD(x, y) =

∑
i

∑
j cijf

∗
ij∑

i

∑
j f
∗
ij

=

∑
i

∑
j cijf

∗
ij∑

i yi
(3.2)

Some advantages of EMD as a distance measure in general are,

• The optimization problem used is a transportation problem and hence a special case of the min-
cost flow problem.

• EMD is a metric if the distributions are of equal length and the ground distances are metric.

• It is robust in comparison to other histogram matching techniques.

• It can be used for partial matching.

If x and y are probability distributions,
∑

i xi =
∑

j yj = 1. So equation 3.2 reduces to,

EMD(x, y) =
∑
i

∑
j

cijf
∗
ij
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which is just the objective function value of the optimization problem.

When considering the EMD between the normalized count vector and the uniform distribution, the

ground distance chosen should be such that the comparison of values corresponding to each item are

weighted equally. Also, no comparison is to be done between components corresponding to different

items. This is achieved using a 0-1 cost function.

cij =

 1 : i 6= j

0 : i = j

With this cost function, the optimal value of the transportation problem becomes a closed form expres-

sion. When x and y are probability distributions, this is given by

EMD(x, y) = 1−
∑
i

min (xi, yi) (3.3)

Then, a closed form expression can be obtained for EMD as follows,

∑
i

∑
j

cijfij =
∑
i

∑
j 6=i

fij =
∑
i

∑
j

fij − fii


=

∑
i

(xi − fii) = 1−
∑
i

fii

So, to minimize the objective function value, we need to maximize
∑

i fii. But,

∑
i

fij = yj ⇒ fii ≤ yi∑
j

fij = xi ⇒ fii ≤ xi

Hence the maximum value of fii is min (xi, yi). This is independent of the value of fi′i′ for any other

i′ 6= i. Hence the minimum value of the objective is 1−
∑

i min (xi, yi). This is equal to the histogram

intersection distance between the distributions x and y defined in [12].

Intuitively, we can explain this as follows. When defining EMD, one distribution is viewed as piles of

earth and the other as holes. The ground distance cij is the distance from the ith pile of dirt to the jth
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hole and the EMD is the minimum amount of work that needs to be done to move all the earth into

holes. For a 0-1 cost function, the ith pile of earth is inside the ith hole (so that no cost is incurred in

moving earth from this pile to this hole) and the cost of moving a unit of earth from any pile to any other

hole is 1. Then the minimum cost of the operation is equal to the amount of dirt that towers above the

corresponding holes, which is equal to the difference between the total amount of dirt and the amount of

dirt that is inside holes. When the distributions are probability distributions, the total amount of dirt is 1

(as
∑

i xi =
∑

i yi = 1) and for each hole-pile pair, the amount of dirt inside the hole is the minimum

of the height of the pile and depth of the hole, which is min (xi, yi), which results in equation 3.3.

When y is the uniform distribution of n components, the histogram intersection distance to x, denoted

as DI(x) becomes

DI(x) = 1−
∑
i

min

(
xi,

1

n

)
(3.4)

where n is the number of items.

Henceforth, we refer to the histogram distance to the uniform distribution as simply intersection distance.

3.3 Properties of Intersection Distance

3.3.1 Relation with Coverage

Lemma 1. Let x and x′ be two normalized count vectors, such that the coverage of x′ is greater than

that of x. Then DI(x
′) ≤ DI(x).

Proof. Recall that coverage of the system is the total number of items recommended across all users,

that is,
∑
i
I[xi 6= 0]. Thus, the coverage of a vector x is the number of non-zero components. To analyze

the effect of increasing coverage, it is sufficient to analyze the effect of changing the value of any one xi

from 0 to ε > 0. Then, this operation can be repeated any number of times to simulate the effect of any

increase in coverage.

Since
∑

i xi = 1, if xi increases from 0 to ε > 0, ∃ xj > ε that decreases to xj − ε. Let x′ be the

distribution after the change. Then, the following cases arise -

• Case 1: x′j >
1
n
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DI(x) = 1−
∑
k

min

(
xk,

1

n

)
= 1−

∑
k 6=i,j

min

(
xk,

1

n

)
−min

(
xj ,

1

n

)

= 1−
∑
k 6=i,j

min

(
xk,

1

n

)
− 1

n

Also, xj > x′j ⇒ xj >
1
n . Then,

DI(x
′) = 1−

∑
k

min

(
x′k,

1

n

)
= 1−

∑
k 6=i,j

min

(
xk,

1

n

)
−min

(
x′j ,

1

n

)
− ε

(as xk = x′k ∀ k 6= i, j)

= 1−
∑
k 6=i,j

min

(
xk,

1

n

)
− 1

n
− ε

Hence DI(x
′) < DI(x).

• Case 2: xj ≥ 1
n , x

′
j <

1
n

DI(x) = 1−
∑
k 6=i,j

min

(
xk,

1

n

)
− 1

n

DI(x
′) = 1−

∑
k 6=i,j

min

(
xk,

1

n

)
−min

(
x′j ,

1

n

)
− ε

= 1−
∑
k 6=i,j

min

(
xk,

1

n

)
− x′j − ε

= 1−
∑
k 6=i,j

min

(
xk,

1

n

)
− (xj − ε)− ε

= 1−
∑
k 6=i,j

min

(
xk,

1

n

)
− xj

Since xj ≥ 1
n ,

1−
∑
k 6=i,j

min

(
xk,

1

n

)
− xj

≤ 1−
∑
k 6=i,j

min

(
xk,

1

n

)
− 1

n

⇒ DI(x
′) ≤ DI(x)
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• Case 3: xj <
1
n

Since xj > x′j , this implies that x′j <
1
n . Then,

DI(x) = 1−
∑
k

min

(
xk,

1

n

)
= 1−

∑
k 6=i,j

min

(
xk,

1

n

)
−min

(
xj ,

1

n

)

= 1−
∑
k 6=i,j

min

(
xk,

1

n

)
− xj

DI(x
′) = 1−

∑
k

min

(
x′k,

1

n

)

= 1−
∑
k 6=i,j

min

(
xk,

1

n

)
−min

(
x′j ,

1

n

)
− ε

= 1−
∑
k 6=i,j

min

(
xk,

1

n

)
− x′j − ε

= 1−
∑
k 6=i,j

min

(
xk,

1

n

)
− (xj − ε)− ε

= 1−
∑
k 6=i,j

min

(
xk,

1

n

)
− xj

Hence DI(x) = DI(x
′).

3.3.2 Relation with l1 Distance

Lemma 2. The histogram intersection distance between two distributions x and y is equal to half the l1

distance between them.

Proof.

∑
i

min (xi, yi) =
∑
i

| xi + yi | − | xi − yi |
2

=
∑
i

| xi + yi |
2

−
∑
i

| xi − yi |
2

=
1

2

(∑
i

(xi + yi)

)
− Dl1(X,Y )

2
(as xi, yi ≥ 0 )

(3.5)
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=

∑
i xi
2

+

∑
i yi
2
− Dl1(X,Y )

2

=
n

2
+
n

2
− Dl1(X,Y )

2

⇒ n−
∑
i

min (xi, yi) =
Dl1(X,Y )

2

⇒ DI(X,Y ) =
Dl1(X,Y )

2

3.3.3 Worst Case Value

Lemma 3. If x is the normalized count vector of a valid recommendation system, then DI(x) ∈ [0, 1−
N
n ].

Proof. Trivially, DI(x) ∈ [0, 1], where the lower bound of 0 is attained when the normalized count

vector is equal to the uniform distribution. Hence it is sufficient to prove that DI(x) ≤ 1− N
n .

A valid recommendation system will not have the same item occur twice in the recommendation list of

a user. So, in a recommendation list of length N , there must be exactly N distinct items. Hence, at least

N items must get recommended. Consider the case where every user gets this same set ofN items. This

is the only way in which only N items can be recommended.

Since increasing coverage cannot increase the distance to the uniform distribution, if more than N items

get recommended, the intersection distance cannot be greater than that obtained in the case of N items.

Since coverage cannot be less than N , the maximum intersection distance is obtained in the case stated.

WLOG assume that the N items recommended to all users are i = 1, 2 . . . N . Let U be the set of all

users and I be the set of all items. Then the number of times item i gets recommended, ci is given by,

ci =


|U| i ∈ {1, 2 . . . N}

0 otherwise

Hence,
∑
i∈I

ci = N |U|. So,

xi =


| 1
N | i ∈ {1, 2 . . . N}

0 otherwise
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Then,

DI(x) = 1−
∑
i∈I

min

(
1

n
, xi

)
= 1−

{
N min

(
1

n
,

1

N

)
+ (n−N) min

(
1

n
, 0

)}
= 1− N

n

3.4 Summary

From lemma 1, we can see that increasing the coverage of a recommender system cannot increase the

distance to the uniform distribution. This is desirable when considering intersection distance as a metric

for aggregate diversity because we intuitively expect a system that recommends more items to be more

diverse, a property that was not satisfied by the probability-based metrics.

Further, if many items are recommended to a large number of users, most components of the vector x

will be roughly equal and close to 1
n , resulting in a smaller intersection distance. If only a few items

are recommended often, only a few components of x will have a value large enough to decrease the

intersection distance noticeably.

An additional advantage of intersection distance is that it is bounded to [0, 1] even in the general case,

with a tighter bound for the case of valid recommendation lists, as shown in lemma 3. Further, it is easy

to compute intersection distance, either using equation 3.3 or as half the l1 distance. These properties

make intersection distance a good choice of metric to evaluate aggregate diversity.
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CHAPTER 4

Basic Heuristics to Improve Diversity

4.1 Pseudo Gradient Descent

The task of recommendation can often be separated into two phases - rating prediction and creation of

recommendation lists. It is possible to optimize metrics associated with the final recommendation lists

by altering the second phase alone, as is done in simple heuristics such as random re-ranking of item.

The second phase can be viewed as an incremental process where, at an instant, we have to decide what

is the next best item to recommend to the user currently being served. During this process, ideally, we

would like to use a technique like gradient descent to minimize the distance of the PDF induced from

the counts of item recommendations to the uniform distribution.

We know that the the intersection distance is equal to half the L1 distance between the normalized count

vector and the uniform distribution. In gradient descent, we attempt to minimize a function by moving

along the direction opposite to the gradient. Here, it is sufficient to look at the gradient of the L1 distance

as it is along the same direction as that of the intersection distance.

We have,

DL1(X) =
∑
i

| xi −
1

n
|

where n is the total number of items available. Hence,

∂Dl1

∂xi
=
| xi − 1

n |
xi − 1

n

Let ci be the count of item i and xi be the induced probability value of item i. Then, if N =
∑

i ci,

xi =
ci
N

Suppose at this instant, item k gets recommended. Let the counts histogram change to c′ and the induced



probabilities to x′. Then,

c′k = ck + 1

c′i = ci ∀ i 6= k

x′k =
c′k∑
i c
′
i

=
ck + 1

N + 1
=

N

N + 1

(ck
N

)
+

1

N + 1
=

Nxk
N + 1

+
1

N + 1

x′i =
c′i∑
i c
′
i

=
ci

N + 1
=

N

N + 1

( ci
N

)
=

Nci
N + 1

(∀ i 6= k)

Let ∆x(k) be the change in the vector x when the count of item k is incremented. Then,

∆x
(k)
k =

1− xk
N + 1

∆x
(k)
i =

−xi
N + 1

∀ i 6= k

The magnitude of ∆x is fixed (albeit not constant) but its direction depends on the selected item k.

Thus, an approximation to gradient descent would be to choose that item k which has the maximum

component along −∇Dl1(x), that is, choose the item,

k∗ = arg max
k

(− < ∆x(k),∇Dl1(x) >) = arg min
k

(< ∆x(k),∇Dl1(x) >) (4.1)

This method will be referred to as pseudo gradient descent for future reference.

We can easily incorporate constraints such as minimum expected rating of an item or only items not

seen (rated) by the user by considering only the set F of items that satisfy these constraints. That is,

k∗ = arg max
k∈F

(− < ∆x(k),∇Dl1(x) >) = arg min
k∈F

(< ∆x(k),∇Dl1(x) >)

Note that this is a very simple technique that assumes that does not even assume that we can influence the

ratings predicted by the recommender system. It is implemented by taking any standard recommender

system as a base, selecting all items that have a predicted rating higher than a suitable threshold and

recommending items according to the rule in 4.1.

Another possible baseline heuristic to improve diversity would be to obtain items with rating above a
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suitable threshold from a base recommender system and greedily recommend that item that would result

in the maximum decrease in intersection distance.

4.2 Experiments

To test these methods, we needed implementations of standard recommender systems to provide base

ratings. Experiments were conducted on the Apache Mahout platform 1 which provides parallel map-

reduce based implementations of some basic recommender systems.

The following are the baseline recommendations systems used -

• ItemAverage - A simple recommender that always estimates the preference for an item to be the
average of all known preference values for that item.

• ItemUserAverage - Like ItemAverage, except that estimated preferences are adjusted for the users’
average preference value.

• UserBased - User based collaborative filtering.

• ItemBased - Item based collaborative filtering.

• ALSWR - Matrix factorization using alternating least squares with weighted-λ regularization [41].

Experiments were conducted on the MovieLens 2 and Netflix 3 datasets. The MovieLens dataset was

collected by the GroupLens Research Project at the University of Minnesota. The statistics of the dataset

are as follows -

No of users = 943

No of artists = 1682

Min ratings per user = 20

Min ratings per artist = 1

Max ratings per user = 737

Max ratings per artist = 583

Mean ratings per user = 106.044

Mean ratings per artist = 59.453

Variance in ratings per user = 10176.414

Variance in ratings per artist = 6457.721

1http://mahout.apache.org/
2http://grouplens.org/datasets/movielens/
3http://www.netflixprize.com/community/viewtopic.php?id=68
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Std dev in ratings per user = 100.878

Std dev in ratings per artist = 80.360

The Netflix dataset available for download has 480189 users and 17770 movies. This large size made it

prohibitive for use in later experiments that involved transfer of the full rating matrix between programs.

Hence, we used a representative sample created by selecting 10% of the movies at random and for each,

retaining 33% of the ratings (stratified item sampling). From the resultant sample, we removed users

with < 50 and movies with < 20 ratings. The resulting dataset had 3985 users and 1101 movies. Its

statistics are as follows -

No of users = 3985

No of movies = 1101

Min ratings per user = 50

Min ratings per movie = 20

Max ratings per user = 357

Max ratings per movie = 1335

Mean ratings per user = 65.612

Mean ratings per movie = 237.477

Variance in ratings per user = 495.318

Variance in ratings per movie = 88178.809

Std dev in ratings per user = 22.256

Std dev in ratings per movie = 296.949

The following metrics were used to compare different methods -

• Intersection Distance between the normalized count vector and the corresponding uniform distri-
bution (ID) is used to measure aggregate diversity. If item i has been recommended ci times,

ID = 1−
∑
i

∣∣∣∣∣ ci∑
j cj
− 1

n

∣∣∣∣∣
where n is the number of items.

• Item coverage (IC) - another coarser measure of aggregate diversity that is relatively easy to inter-
pret. It is the number of items that occur in the top-N list of at least one user.

• Average Predicted Rating (APR) - This is indicative of how relevant a recommendation list is
considered to be, by the recommender system. If U is the set of users, L(u) is the recommendation
list for user u and r̂(i, u) is the predicted rating of user u for item i, then,

APR =
1

N |U|
∑
u∈U

∑
i∈L(u)

R̂ui
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Using each of the available recommender systems as a baseline to provide an initial list of relevant items,

the following algorithms were tested -

• Pseudo Gradient Descent (PSG) - Iteratively recommends that item for which the component of
the subsequent change in the induced PMF of the histogram of the number of times an item has
been recommended along the negative of gradient of the required EMD (intersection distance) is
maximum among the items relevant for the user.

• Unconstrained Pseudo Gradient Descent (UPSG) - Like PseudoGradientDescent but does not re-
strict itself to items relevant to the user. However, if two items have equal contribution, the item
with a higher predicted rating for the user is chosen.

• Greedy - Iteratively recommends the item among the items relevant for the user, that results in
maximum decrease in intersection distance.

• UnconstrainedGreedy - Like Greedy, but does not restrict itself to items relevant to the user.

• Random - Randomly selects N items from those relevant to the user.

As is the case with most gradient descent based methods, Pseudo Gradient Descent needs a good starting

point. In the implementation, initially, the normalized count vector is initialized to something close to

the uniform distribution to avoid loval optima problems.

These experiments were expected to verify the following hypotheses -

• Both methods result in a lower intersection distance than the baseline (any standard recommender
system that they use to determine relevance of an item).

• Both methods do not substantially decrease the quality of the recommended list (in terms of item
relevance).

• Randomly selecting items from the pool of relevant items should either result in lower diversity,
relevance or both.

• If no relevance threshold is imposed, relevance of the list can degrade significantly, in either
method.

• Diversity improves on increasing N (number of items in a user’s recommendation list) but rele-
vance degrades.

The results on the MovieLens dataset are presented in tables 4.1 - 4.5.
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Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.992 13.0 4.994 0.982 31.0 4.739

Random 0.951 82.0 4.443 0.901 166.0 4.262

Greedy 0.944 100.0 4.449 0.944 100.0 4.449

Unconstrained Greedy 0.189 1672.0 2.417 0.189 1672.0 2.417

Pseudo Gradient Descent 0.944 100.0 4.449 0.898 177.0 4.274

Unconstrained Pseudo

Gradient Descent

0.124 1654.0 2.922 0.117 1662.0 2.936

Table 4.1: Results of basic heuristics on MovieLens : Baseline - ItemAverage

Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.992 13.0 4.994 0.982 31.0 4.739

Random 0.951 82.0 4.466 0.906 158.0 4.273

Greedy 0.944 100.0 4.449 0.944 100.0 4.449

Unconstrained Greedy 0.189 1672.0 2.417 0.189 1672.0 2.417

Pseudo Gradient Descent 0.944 100.0 4.449 0.898 177.0 4.274

Unconstrained Pseudo

Gradient Descent

0.122 1653.0 2.928 0.121 1655.0 2.927

Table 4.2: Results of basic heuristics on MovieLens : Baseline - ItemUserAverage

Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.833 281.0 5.0 0.698 508.0 5.0

Random 0.712 485.0 4.995 0.565 732.0 4.911

Greedy 0.539 966.0 4.996 0.539 966.0 4.996

Unconstrained Greedy 0.157 1682.0 1.338 0.157 1682.0 1.338

Pseudo Gradient Descent 0.539 966.0 4.996 0.472 1218.0 4.914

Unconstrained Pseudo

Gradient Descent

0.084 1682.0 2.344 0.086 1682.0 2.328

Table 4.3: Results of basic heuristics on MovieLens : Baseline - ItemBased
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Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.883 196.0 3.875 0.838 273.0 3.707

Random 0.862 232.0 3.638 0.825 294.0 3.584

Greedy 0.794 346.0 3.624 0.794 346.0 3.624

Unconstrained Greedy 0.227 1301.0 -0.997 0.227 1301.0 -0.997

Pseudo Gradient Descent 0.794 346.0 3.621 0.758 407.0 3.585

Unconstrained Pseudo

Gradient Descent

0.427 964.0 -0.986 0.436 948.0 -0.983

Table 4.4: Results of basic heuristics on MovieLens : Baseline - UserBased

Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.894 179.0 4.688 0.827 291.0 4.575

Random 0.844 262.0 4.415 0.761 402.0 4.261

Greedy 0.778 460.0 4.412 0.778 460.0 4.412

Unconstrained Greedy 0.166 1682.0 2.342 0.165 1682.0 2.322

Pseudo Gradient Descent 0.778 460.0 4.412 0.731 647.0 4.263

Unconstrained Pseudo

Gradient Descent

0.082 1681.0 2.851 0.081 1681.0 2.847

Table 4.5: Results of basic heuristics on MovieLens : Baseline - ALSWR

The results on the Netflix dataset are presented in tables 4.6 - 4.10.

Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.986 16.0 4.261 0.974 30.0 4.184

Random 0.941 67.0 4.032 0.892 124.0 3.913

Greedy 0.941 68.0 4.03 0.941 68.0 4.03

Unconstrained Greedy 0.662 969.0 2.218 0.662 969.0 2.218

Pseudo Gradient Descent 0.941 68.0 4.03 0.891 130.0 3.911

Unconstrained Pseudo

Gradient Descent

0.66 976.0 2.418 0.66 981.0 2.418

Table 4.6: Results of basic heuristics on Netflix : Baseline - ItemAverage

28



Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.986 16.0 4.261 0.974 30.0 4.184

Random 0.942 66.0 4.028 0.891 124.0 3.911

Greedy 0.941 68.0 4.03 0.941 68.0 4.03

Unconstrained Greedy 0.662 969.0 2.218 0.662 969.0 2.218

Pseudo Gradient Descent 0.941 68.0 4.03 0.891 130.0 3.911

Unconstrained Pseudo

Gradient Descent

0.66 983.0 2.419 0.659 987.0 2.416

Table 4.7: Results of basic heuristics on Netflix : Baseline - ItemUserAverage

Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.784 324.0 4.596 0.718 512.0 4.345

Random 0.61 603.0 4.051 0.469 895.0 3.856

Greedy 0.588 844.0 4.04 0.588 844.0 4.04

Unconstrained Greedy 0.015 1101.0 2.922 0.015 1101.0 2.922

Pseudo Gradient Descent 0.588 844.0 4.04 0.459 1050.0 3.855

Unconstrained Pseudo

Gradient Descent

0.011 1101.0 3.1 0.011 1101.0 3.1

Table 4.8: Results of basic heuristics on Netflix : Baseline - ItemBased

Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.671 491.0 3.914 0.638 599.0 3.498

Random 0.638 539.0 3.419 0.634 603.0 3.433

Greedy 0.635 610.0 3.43 0.635 610.0 3.43

Unconstrained Greedy 0.367 701.0 -1.0 0.367 701.0 -1.0

Pseudo Gradient Descent 0.635 610.0 3.43 0.635 610.0 3.43

Unconstrained Pseudo

Gradient Descent

0.547 500.0 -1.0 0.541 507.0 -0.999

Table 4.9: Results of basic heuristics on Netflix : Baseline - UserBased
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Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.844 234.0 4.233 0.822 306.0 4.159

Random 0.778 317.0 4.036 0.729 430.0 3.921

Greedy 0.772 429.0 4.038 0.772 429.0 4.038

Unconstrained Greedy 0.259 1000.0 2.581 0.227 1016.0 2.623

Pseudo Gradient Descent 0.772 429.0 4.038 0.721 548.0 3.921

Unconstrained Pseudo

Gradient Descent

0.244 1034.0 2.738 0.215 1053.0 2.787

Table 4.10: Results of basic heuristics on Netflix : Baseline - ALSWR

4.3 Observations and Discussion

We observe that both the Pseudo Gradient Descent and greedy methods are able to lower the intersection

distance of the baseline recommenders. However, they do not perform significantly better than simple

re-ranking. Further, there is little difference between the performance of the two methods, except that

the performance of Pseudo Gradient Descent improves on increasing N .

On the other hand, we see that removing the constraint on rating threshold improves the intersection

distance of both Pseudo Gradient Descent and greedy methods dramatically, indicating that there is

considerable scope for improvement in this direction. However, this is also accompanied by a noticeable

drop in the average predicted rating, as expected. In both respects, there is little difference between the

two heuristics.

Unconstrained methods are also significantly more time consuming that constrained ones because to

recommend each item for each user, it is necessary to iterate over the entire item set. In future exper-

iments, to compare against these heuristics, the unconstrained versions of the pseudo gradient descent

and greedy methods have been used.

30



CHAPTER 5

Auction Formulations

5.1 Item-as-bidder Model

Ideally, if we wish to optimize a recommender system for intersection distance, we would like to be

able to compute the intersection distance, given the parameter values of the system and then modify

those parameter values such that the intersection distance is improved. Since the intersection distance

is calculated using recommendation lists, this requires us to be able to determine which items would

be placed in a user’s recommendation list. Many models of recommender systems have probabilistic

parameters Θ and a function that computes the predicted rating of a user for an item given Θ. Then, to

be able to determine the top-N items for a user, we need to be able to solve the following problem.

A number Θ is drawn according to some distribution and n functions r1(Θ), r2(Θ) . . . rn(Θ) are eval-

uated. If these numbers are sorted in descending order, what is the probability that ri(Θ) will lie in the

top-N?

In order to discover what assumptions need to be made on the functions r1, r2, . . . for the above problem

to be solvable, we considered the following problem, which is similar to the stated problem.

Consider an auction in which each item in the recommender system is a bidder in the auction and each

user is a good for sale. For each good (user), there is a separate auction with N units of the good, where

N is the number of items required in a user’s recommendation list. The valuation and bid of a bidder

(item) i for a good (user) u is the predicted rating R̂ui. Bidders are assumed to bid truthfully so we

do not require an incentive compatible mechanism for the auction. Then, this design will allocate the

N units of good u to the N highest bidders, which means that the N items of highest predicted rating

will be placed in the user’s recommendation list. If we can calculate the probability that the a particular

bidder (item) will be a winner in an auction (be placed in that user’s recommendation list), then we have

obtained the probability that the item has been recommended to that user.

This problem essentially requires us to determine the probability of a bidder winning a multi-unit auc-

tion, under suitable assumptions about the valuations of the bidders. We could not find or derive any

results of this nature. Further, we found that this problem was related to the order statistics problem. The



kth order statistic of n random variables is the value of the kth smallest of the variables. Specifically,

we need the (n − N)th order statistic X(n−N) of n independent, non-identically distributed normal

random variables R̂u1, R̂u2 . . . R̂un. Then,the probability that item i gets recommended to user u is

Pr(R̂ui ≥ X(n−N)). Predicted ratings R̂ui are typically modelled as Gaussian random variables. To

our knowledge, there are no results for the order statistics of Gaussian distributions. An approximate

solution was found in [23] but this was cumbersome to use and we could not derive further results using

this.

5.2 User-as-bidder Model

Another formulation we attempted made use of a k-duplicates combinatorial auction setup. Consider an

single auction with each user in the recommender system as a bidder and each item as a good for sale.

The valuation and bid of bidder u for good i is R̂ui. A bidder will bid for at most one unit of a good

and will bid truthfully, thus removing the need for incentive compatibility. This is now a special case of

the formulation used in [5] and hence, their algorithm can be applied to it. Unfortunately, this is only an

approximate solution to the problem, although a fairly good one.

Each item can be recommended to at most k users in this setting, which is guaranteed to increase aggre-

gate diversity. It can in fact be shown that the intersection distance can be lower bounded if each item is

recommended at most k times. Additionally,

• The efficient allocation (optimal solution to the WDP) aims to maximize the sums of declared
valuations of all bidders, which is equivalent to maximizing the total rating of all the lists. Thus,
this method maximizes relevance for a certain level of diversity.

• Alternately a lower bound on relevance can be ensured as follows. To prevent items below a
certain rating from being recommended to a user, set a reserve price for all items as the minimum
rating desired.

However, this formulation poses some difficulties. This model ensures that for each item i, the number

of times it gets recommended, ci ≤ k where k is a tunable parameter. To calculate intersection distance,

we need the a bound on the normalized count, that is, on xi = c1∑
i
ci

. But in this method, it is not even

necessary that
∑
i
ci > 0. For example, if we set a reserve price (rating threshold) as 6 when all ratings

are in the range 1-5, no bidder has a positive surplus on any item, and hence, no item gets recommended.

Also, by setting a low enough reserve price, we can get ci = k ∀ i, which would result in zero intersection

distance. But as there are no other constraints on this allocation, it is entirely possible that the same k
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users win each auction, that is, all items get recommended to the same k users. This would mean that

for most users, no items get recommended. A simple, albeit unlikely example is the case where one user

has a rating of 5 for every item but all other users have a rating < 5 for every item. Then, if there is one

unit of each item, an efficient auction would allocate all items to the user with all ratings as 5. We can,

however, show that if user-mean centered ratings are used, that is, if the valuation vui = R̂ui− 1
|I|
∑
i
R̂ui,

then for any pair of users p, q, ∃ i ∈ I : vpi ≤ vqi.

This is proved as follows.

vpi − vqi =
(
R̂pi − R̂qi

)
− 1

|I|
∑
j∈I

(
R̂pj − R̂qj

)

Let Xi = R̂pi − R̂qi. Then,

vpi − vqi = Xi −
1

|I|
∑
j∈I

Xj

Suppose vpi − vqi > 0 ∀ i ∈ I

⇒
∑
i∈I

vpi − vqi > 0

⇒
∑
i∈I

Xi −
1

|I|
∑
j∈I

Xj

 > 0

⇒
∑
i∈I

Xi −
∑
j∈I

Xj > 0

⇒ 0 > 0

which is a contradiction. Hence, ∃ i ∈ I : vpi ≤ vqi.

This indicates that although theoretically it is possible for only a small number of users to get recom-

mendations, the worst case situation can be avoided. However, this still does not ensure that there is an

equitable distribution of recommended items among users. One possible method to ensure this would be

to introduce budget constraints for bidders that could be used to limit the number of items recommended

to a user. However, we were unable to find solutions to budget-constrained multi-unit combinatorial

auctions. Later, we managed to formulate the problem as a min cost flow problem, which is much easier

to solve optimally. Using this, we can place a threshold on the number of times an item is recommended,

while also ensuring that items are recommended for all users. This is discussed in the next chapter.
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CHAPTER 6

Min-Cost-Flow Based Formulations

In this chapter, we propose two min cost flow based algorithms that attempt to improve the intersection

distance of a recommendation system in different ways. Both algorithms are two-phase approaches. The

first phase involves obtaining the predicted rating matrix from a standard baseline recommender system.

In the second phase, a minimum cost flow problem is used to identify recommendation lists of length N

for users such that intersection distance is minimized, without loss in the relevance of recommendations

for the user. Tha algorithms differ in their second phase. The first method attempts to threshold the

number of times each item gets recommended, thereby bounding intersection distance. The second

method designs a problem that jointly minimizes the total rating of the recommended items (a measure

of relevance) and intersection distance. We use standard baseline algorithms for the first phase. The

second phase of both algorithms is discussed in the following sections.

6.1 Min Cost Flow Problem

The minimum cost flow problem is a generalization of the maximum flow problem [19]. The problem

is defined over a flow network G = (V,E). Each edge (u, v) ∈ E is associated with a capacity l(u, v)

and a cost c(u, v) and each node v ∈ V is associated with a balance - a demand or a supply, b(v). By

convention, b(v) < 0 is interpreted as a demand and b(v) > 0 as supply. A pseudoflow is a function

X : E → R satisfying the following capacity and antisymmetry constraints for each edge (u, v) ∈ E -

X(u, v) ≤ l(u, v)

X(u, v) = −X(v, u)

The excess of a pseudoflow X at node u, eX(u) is defined as

eX(u) = b(u)−
∑

(u,v)∈E

X(u, v)

A feasible flow is a pseudoflow X such that eX(v) = 0 ∀ v ∈ V . The cost of a pseudoflow X , c(X) is



given by

c(X) =
1

2

∑
(u,v)∈E

c(u, v)X(u, v)

The minimum cost flow problem is to find a flow of minimum cost. The integrality theorem for minimum

cost flow states that if all capacities and balances are integers and there exists a feasible flow, there exists

an integral minimum cost flow.

6.2 Bounding Number of Times an Item gets Recommended

6.2.1 Formulation

Suppose we are given the set of users U and the set of items I. Let R̂ui be the rating of user u ∈ U

for item i ∈ I, predicted by a standard recommendation system. Instead of just selecting the N items

of highest rating to be recommended to a user, we would like to select items appropriately such that

the intersection distance is decreased without compromising much on the relevance to the user. The

following method assumes that we have access to a base recommendation system that provides us with

reliable predicted ratings - a reasonable assumption, given the success of a number of rating prediction

algorithms in competitions such as the Netflix prize.

Consider the following min cost flow problem. Let the flow network be G = (V,E) with V = U ∪ I ∪

{ud}, where ud is a dummy user node. There is a directed edge from i ∈ I to u ∈ U iff R̂ui ≥ rT (rT

is some suitable threshold) and (i, ud) ∈ E ∀ i ∈ I.

The cost of edge (i, u), is ciu = M−R̂ui, i ∈ I, u ∈ U whereM is a constant such thatM ≥ R̂ui ∀ u, i.

ciud = M ∀ i ∈ I. Thus, an edge between a user and item is more costly is the user does not prefer the

item much.

Each edge (i, u) has a capacity liu where

liu =


1 u 6= ud

k2 − k1 u = ud

where k1 and k2 are parameters of the model.
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The balances (supplies / demands) at nodes are given by

bv =


−N v = u ∈ U

k2 v = i ∈ I

−(k2|I| −N |U|) v = ud

An integral min cost flow will only have a flow of 1 or 0 along edges (i, u), u 6= ud. If the flow in edge

(i, u) is 1, we interpret this as placing i in the recommendation list of u. The integrality theorem for

min cost flow states that if the capacities and demands are integral and a feasible flow exists, then there

is a minimum cost flow which is integral on each arc. When the flow is integral, the capacity constraint

ensures that an item is recommended to a user exactly once and the balances ensure that

• Every user gets exactly N items.

• Every item is assigned to at most k2 users.

• At least k1 units of each item must go to non-dummy users.

Thus, each item gets recommended at least k1 and at most k2 times, that is, k1 ≤ ci ≤ k2 ∀ i ∈

I. Now we can use bounds that will be proved in section 6.2.2 to guarantee an upper bound on the

intersection distance of the resultant set of recommendation lists generated by this problem. In practice,

it is convenient to use k1 = 0 because it is difficult to ensure that all items get recommended at least

once, and this is also not always desirable.

Note that as there are only incoming edges to the dummy user ud, it is necessary for the balance at node

ud to be negative (ud must be a demand node, not a supply node). Thus, we have feasible solutions only

if k2|I| ≥ N |U| ⇒ k2 ≥ N |U|
|I| .

6.2.2 Theoretical Guarantees

Review of notation - I - Set of all items

ci - Number of times item i is recommended

n - Total number of items

xi = ci∑
i∈I ci

DI(x) - Intersection distance of the normalized count vector x from the uniform distribution
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A Weak Bound

Lemma 4. The intersection distance for a recommender system which satisfies k1 ≤ ci ≤ k2 ∀ i ∈ I is

at most k2−k1
2k1

.

Proof. Suppose k1 ≤ ci ≤ k2 ∀ i ∈ I. Then,

ci ≤ k2,
∑
i∈I

ci ≥ k1n

⇒ xi ≤
k2

k1n

⇒ xi −
1

n
≤ k2 − k1

k1n
(6.1)

ci ≥ k1,
∑
i∈I

ci ≤ k2n

⇒ xi ≥
k1

k2n

⇒ xi −
1

n
≥ −(k2 − k1)

k2n
(6.2)

From 6.1 and 6.2 ∣∣∣∣xi − 1

n

∣∣∣∣ ≤ max

(∣∣∣∣k2 − k1

k1n

∣∣∣∣ , ∣∣∣∣−(k2 − k1)

k2n

∣∣∣∣)
⇒

∣∣∣∣xi − 1

n

∣∣∣∣ ≤ k2 − k1

k1n

⇒
∑
i∈I

∣∣∣∣xi − 1

n

∣∣∣∣ ≤ k2 − k1

k1

⇒ DI(x) =
1

2

∑
i∈I

∣∣∣∣xi − 1

n

∣∣∣∣ ≤ k2 − k1

2k1

This bound clearly weakens with increase in k2. To study the effect of k1, consider f(k1) = k2−k1
2k1

⇒

f ′(k1) = 2k1(−1)−(k2−k1)(2)
4k2

1
= −k2

2k2
1
< 0. Thus f(k1) decreases with increase in k1. Hence, increasing

k1 strengthens the bound. Note that this bound becomes useless when k1 = 0. Since it requires k1

and k2 to be very close, it is not of much practical use. In particular, forcing k1 > 0, that is, ensuring

that each item gets recommended at least once is particularly difficult, both in cases when an item is

unpopular (in which case we would not even want it to be recommended) and in cold start cases when

we do not have enough ratings to determine the quality of an item.
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A Stronger Bound

The previous bound assumes ci ≥ k1. But this is a poor assumption in practice and, in the case of the

min cost flow method, often results in no solution to the resulting min cost flow problem. We would like

to derive a bound on intersection distance, only given that ci ≤ k ∀ i. Let U be the set of users, I be

the set of items and let N items be desired in each user’s recommendation list. Also assume |I| = n.

Lemma 5. The intersection distance for a recommender system that satisfies ci ≤ k ∀ i ∈ I is bounded

as follows -

DI(x) ≤


1− 1

2

(
N |U|
nk −

n
N |U|

)
, N |U| ≥ n and k < 1 + 2N |U|

n

1 , otherwise

Proof. Since the sum of the number of times each item is recommended must equal the total number of

recommendations required across all users, we have
∑n

i=1 ci = N |U| ⇒ xi ≤ k
N |U| . Hence,

xi −
1

n
≤ k

N |U|
− 1

n
(6.3)

Let the maximum number of items i with ci = 0 be m. Hence, for (n − m) items, ci > 0. Also,

for all these, ci ≤ k. Hence, these items can account for at most k(n − m) recommendations. But∑n
i=1 ci = N |U| ⇒ N |U| ≤ k(n−m)⇒ m ≤ n− N |U|

k .

Let Z = {i ∈ I : ci = 0}. Then |Z| ≤ m ≤ n− N |U|
k .

Also, let Y = {i ∈ I : ci > 0}.

∀ i ∈ Z, ci = 0⇒ xi = 0.

∀ i ∈ Z, ci ≥ 1⇒ xi ≥ 1
N |U| .

⇒ xi −
1

n
≥ 1

N |U|
− 1

n
⇒ −

(
xi −

1

n

)
≤ −

(
1

N |U|
− 1

n

)
(6.4)

If x ≤ a and −x ≤ b then |x| ≤ max(|a|, |b|). Hence, from equations 6.3 and 6.4,

∣∣∣∣xi − 1

n

∣∣∣∣ ≤ max

(∣∣∣∣ k

N |U|
− 1

n

∣∣∣∣ , ∣∣∣∣−( 1

N |U|
− 1

n

)∣∣∣∣) (6.5)
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We know that k ≥ N |U|
n for a solution to exist for the min cost flow problem. Hence,

k

N |U|
− 1

n
≥ 0⇒

∣∣∣∣ k

N |U|
− 1

n

∣∣∣∣ =
k

N |U|
− 1

n
(6.6)

Suppose N |U| ≤ n

⇒ 1

N |U|
− 1

n
≥ 0⇒

∣∣∣∣ 1

N |U|
− 1

n

∣∣∣∣ =
1

N |U|
− 1

n

Also, ∣∣∣∣ k

N |U|
− 1

n

∣∣∣∣ =
k

N |U|
− 1

n
≥ 1

N |U|
− 1

n
=

∣∣∣∣ 1

N |U|
− 1

n

∣∣∣∣ (6.7)

Suppose N |U| > n.

⇒ 1

N |U|
− 1

n
< 0⇒

∣∣∣∣ 1

N |U|
− 1

n

∣∣∣∣ =
1

n
− 1

N |U|

Consider the condition for,

1

n
− 1

N |U|
>

k

N |U|
− 1

n
⇒ 2

n
>
k − 1

N |U|
⇒ k < 1 +

2N |U|
n

(6.8)

From 6.5, 6.6, 6.7 and 6.8,

∣∣∣∣xi − 1

n

∣∣∣∣ ≤


1
n −

1
N |U| , N |U| > n and k < 1 + 2N |U|

n

k
N |U| −

1
n , otherwise

Now, intersection distance is given by,

DI(x) =
1

2

n∑
i=1

∣∣∣∣xi − 1

n

∣∣∣∣ =
1

2

(∑
i∈Z

∣∣∣∣xi − 1

n

∣∣∣∣+
∑
i∈Y

∣∣∣∣xi − 1

n

∣∣∣∣
)

=
1

2

(∑
i∈Z

1

n
+
∑
i∈Y

∣∣∣∣xi − 1

n

∣∣∣∣
)

=
1

2

(
|Z|
n

+
∑
i∈Y

∣∣∣∣xi − 1

n

∣∣∣∣
)

≤ 1

2

(
1

n

(
n− N |U|

k

)
+
∑
i∈Y

∣∣∣∣xi − 1

n

∣∣∣∣
)

≤ 1

2

(
1− N |U|

k
+
∑
i∈Y

B

) (
if
∣∣∣∣xi − 1

n

∣∣∣∣ ≤ B ∀ i ∈ I)
=

1

2

(
1− N |U|

k
+B|Y |

)
≤ 1

2

(
1− N |U|

k
+Bn

)
(as |Y | ≤ n)
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Substituting the bound B, we get,

DI(x) ≤


1− 1

2

(
N |U|
nk −

n
N |U|

)
, N |U| > n and k < 1 + 2N |U|

n

1
2

(
nk
N |U| −

N |U|
nk

)
, otherwise

The second bound can occasionally become too weak. It is desirable to remove the redundant cases

when it exceeds 1.
1

2

(
nk

N |U|
− N |U|

nk

)
> 1 ⇒ nk

N |U|
> 2 +

N |U|
nk

But for a feasible solution,

k > 1 +
2N |U|
n

⇒ nk

N |U|
>

n

N |U|
+ 2

Hence this bound will always be greater than 1. In this case, it is better to use the tighter bound of 1.

Hence,

DI(x) ≤


1− 1

2

(
N |U|
nk −

n
N |U|

)
, N |U| ≥ n and k < 1 + 2N |U|

n

1 , otherwise

Consider the bound 1 − 1
2

(
N |U|
nk −

n
N |U|

)
. As k increases, N |U|

nk decreases so 1 − 1
2

(
N |U|
nk −

n
N |U|

)
increases. Thus, the bound worsens with increase in k.

It can be seen from experiments that the intersection distance for the min cost flow method does not fall

below 0.5 for the examined range of parameter values. It can be shown that this bound never attains a

value less than 0.5.

Lemma 6. For all recommender systems, 1− 1
2

(
N |U|
nk −

n
N |U|

)
≥ 0.5.

Proof. Suppose for some parameter value, the bound is lower than 0.5. Then,

1− 1

2

(
N |U|
nk

− n

N |U|

)
<

1

2
⇒ N |U|

nk
− n

N |U|
> 1

⇒ N |U|
nk

> 1 +
n

N |U|
⇒ k <

N |U|

n
(

1 + n
N |U|

) =
(N |U|)2

n (n+N |U|)
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But for a feasible solution, k ≥ N |U|
n . Hence,

N |U|
n

<
(N |U|)2

n (n+N |U|)
⇒ 1 <

N |U|
n+N |U|

⇒ n+N |U| < N |U| ⇒ n < 0

which is not possible. This, this bound is not good enough to find a parameter value which is guaranteed

to result in an intersection distance less than 0.5.

6.2.3 Experiments

This method was implemented using a min cost flow solver from Google OR tools 1. Since it also

requires ratings from base recommendation systems, implementations from Apache Mahout 2 were used

for the same. Experiments have been conducted on the Movielens and Netflix datasets. The method has

been implemented in two ways -

• MinCostFlow(k1, k2) - This creates a flow problem in which the flow network has an edge from
every item to every user. Edge costs used to ensure that items of higher rating are preferentially
assigned to a user. The design of the problem ensures that N items are recommended to each user
and each item gets recommended ≥ k1 and ≤ k2 times.

• MinCostFlowThreshold(k1, k2, r0) - This is like MinCostFlow except that in the flow network,
there is an arc from item i to user u only if r̂ui ≥ r0. This ensures that the average predicted rating
of the system is at least r0 (and will in practice be much higher than r0).

We have already discussed that a necessary condition for the problem to have a feasible solution is that

k2 ≥ N |U|
|I| . For the movielens dataset, as |U| = 943 and |I| = 1682, we get k2 ≥ 6 for N = 10 and

k ≥ 12 for N = 20. Also, as we have N |U| > n for N > 1, we can use the bound in 6.2.2 to estimate

bounds on the results. For N = 10, k ≥ 6 for a solution to exist. Thus, the tightest bound is for k = 6,

which is 0.62. For N = 20, k ≥ 12 for a solution to exist. Thus, the tightest bound is for k = 12, which

is 0.577.

The existence of a solution for MinCostFlowThreshold also depends on the threshold chosen. As the

threshold is increased, the number of edges decreases and, if other parameters are kept constant, the

probability of the existence of a feasible solution decreases. For this range of values of k1 and k2, the

problem is observed to have no solution for thresholds of 4 and 3.5. The results of the experiment

are presented in Appendix B.The reported results are for a threshold of 3 and for those pairs (k1, k2),

k1 ∈ {0, 1}, k2 ∈ {1, 2, . . . 10} which have solutions.

1http://code.google.com/p/or-tools
2http://mahout.apache.org/
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A sample of the variation of intersection distance and average predicted rating with the parameter k2 are

shown in Figure 6.1.

Figure 6.1: Dataset=MovieLens, Baseline=UserBased, N=20

The plots showing the behaviour in other settings can be found in Appendix D. In the following subsec-

tions, we present the best results obtained for both datasets.

Results on the MovieLens Dataset

Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.992 13.0 4.994 0.992 13.0 4.994

Random 0.953 79.0 4.448 0.951 82.0 4.441

Pseudo Gradient Descent 0.944 100.0 4.449 0.898 177.0 4.274

Greedy 0.944 100.0 4.449 0.944 100.0 4.449

Min Cost Flow:0-6 0.621 638.0 4.002 - - -

Min Cost Flow:0-12 0.826 293.0 4.843 0.675 546.0 4.501

Min Cost Flow Threshold:0-7 0.703 500.0 4.416 - - -

Min Cost Flow Threshold:0-12 0.832 282.0 4.851 0.672 551.0 4.491

Table 6.1: Min cost flow bounding method on MovieLens : Baseline - ItemAverage
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Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.992 13.0 4.994 0.992 13.0 4.994

Random 0.952 80.0 4.456 0.952 80.0 4.439

Pseudo Gradient Descent 0.944 100.0 4.449 0.898 177.0 4.274

Greedy 0.944 100.0 4.449 0.944 100.0 4.449

Min Cost Flow:0-6 0.621 638.0 4.002 - - -

Min Cost Flow:0-12 0.826 293.0 4.843 0.675 546.0 4.501

Min Cost Flow Threshold:0-7 0.703 500.0 4.416 - - -

Min Cost Flow Threshold:0-12 0.832 282.0 4.851 0.672 551.0 4.491

Table 6.2: Min cost flow bounding method on MovieLens : Baseline - ItemUserAverage

Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.833 281.0 5.0 0.833 281.0 5.0

Random 0.706 495.0 4.998 0.707 492.0 4.997

Pseudo Gradient Descent 0.539 966.0 4.996 0.472 1218.0 4.914

Greedy 0.539 966.0 4.996 0.539 966.0 4.996

Min Cost Flow:0-6 0.603 668.0 4.518 - - -

Min Cost Flow:0-12 0.704 498.0 4.544 0.685 529.0 4.51

Min Cost Flow Threshold:0-7 0.647 594.0 4.571 - - -

Min Cost Flow Threshold:0-12 0.716 477.0 4.544 0.702 502.0 4.583

Table 6.3: Min cost flow bounding method on MovieLens : Baseline - ItemBased

Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.883 196.0 3.875 0.883 196.0 3.875

Random 0.874 212.0 3.61 0.869 221.0 3.619

Pseudo Gradient Descent 0.794 346.0 3.621 0.758 407.0 3.585

Greedy 0.794 346.0 3.624 0.794 346.0 3.624

Min Cost Flow:0-6 0.61 656.0 3.463 - - -

Min Cost Flow:0-12 0.846 259.0 4.907 0.669 556.0 4.648

Min Cost Flow Threshold:0-7 0.747 426.0 4.39 - - -

Min Cost Flow Threshold:0-12 0.844 263.0 4.896 0.671 554.0 4.645

Table 6.4: Min cost flow bounding method on MovieLens : Baseline - UserBased
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Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.894 179.0 4.678 0.894 179.0 4.661

Random 0.848 256.0 4.396 0.839 270.0 4.386

Pseudo Gradient Descent 0.778 460.0 4.412 0.731 647.0 4.263

Greedy 0.779 465.0 4.4 0.783 463.0 4.389

Min Cost Flow:0-6 0.605 665.0 3.711 - - -

Min Cost Flow:0-12 0.783 365.0 4.141 0.677 543.0 4.076

Table 6.5: Min cost flow bounding method on MovieLens : Baseline - ALSWR

Results on the Netflix Dataset

Due to the prohibitive run time on the Netflix dataset, only the smallest possible values of the parameter

k2 were tested as it was found that this results in the best possible value of intersection distance.

Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.986 16.0 4.261 0.986 16.0 4.261

Random 0.942 65.0 4.029 0.942 66.0 4.029

Greedy 0.941 68.0 4.03 0.941 68.0 4.03

Pseudo Gradient Descent 0.941 68.0 4.03 0.891 130.0 3.911

Min Cost Flow:0-37 0.207 1070.0 3.917 - - -

Min Cost Flow:0-73 - - - 0.429 782.0 4.278

Table 6.6: Min cost flow bounding method on Netflix : Baseline - ItemAverage

Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.986 16.0 4.261 0.986 16.0 4.261

Random 0.942 67.0 4.03 0.941 66.0 4.03

Greedy 0.941 68.0 4.03 0.941 68.0 4.03

Pseudo Gradient Descent 0.941 68.0 4.03 0.891 130.0 3.911

Min Cost Flow:0-37 0.207 1070.0 3.917 - - -

Min Cost Flow:0-73 - - - 0.429 782.0 4.278

Table 6.7: Min cost flow bounding method on Netflix : Baseline - ItemUserAverage
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Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.784 324.0 4.596 0.784 324.0 4.596

Random 0.605 602.0 4.044 0.609 590.0 4.041

Greedy 0.588 844.0 4.04 0.588 844.0 4.04

Pseudo Gradient Descent 0.588 844.0 4.04 0.459 1050.0 3.855

Min Cost Flow:0-37 0.199 1069.0 4.218 - - -

Min Cost Flow:0-73 - - - 0.401 837.0 4.359

Table 6.8: Min cost flow bounding method on Netflix : Baseline - ItemBased

Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.671 491.0 3.914 0.671 491.0 3.914

Random 0.642 536.0 3.45 0.639 532.0 3.43

Greedy 0.635 610.0 3.43 0.635 610.0 3.43

Pseudo Gradient Descent 0.635 610.0 3.43 0.635 610.0 3.43

Min Cost Flow:0-37 0.194 1089.0 3.735 - - -

Min Cost Flow:0-73 - - - 0.403 842.0 4.504

Table 6.9: Min cost flow bounding method on Netflix : Baseline - UserBased

Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.85 226.0 4.23 0.855 223.0 4.229

Random 0.78 314.0 4.035 0.781 312.0 4.034

Greedy 0.776 431.0 4.034 0.78 418.0 4.035

Pseudo Gradient Descent 0.772 429.0 4.038 0.721 548.0 3.921

Min Cost Flow:0-37 0.199 1070.0 3.543 - - -

Min Cost Flow:0-73 - - - 0.432 729.0 3.702

Table 6.10: Min cost flow bounding method on Netflix : Baseline - ALSWR
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6.2.4 Observations and Discussion

In the MovieLens dataset, we observe that the improvement over the heuristics is not significant. Al-

though the best results of this method do improve over the heuristics, it is by a very small margin. On

some baseline recommenders, the APR is much better than the heuristics, improving almost by 20% but

on others, the heristics perform better. An interesting point is that it is on the simpler recommenders

(which primarily base their rating predcitions on averages) on which the performance is poor.

We observe that keeping k1 constant, intersection distance seems to more or less increase with k2. This

is in line with the fact that the bound proved for intersection distance weakens with increase in k2.

The best results are obtained with the smallest possible parameter values. We also see that keeping k2

constant, the performance for k1 = 1 is worse than that of k1 = 0. This is a little difficult to explain

because it appears that the former would force an increase in coverage, but would also recommend a lot

of items of poor relevance to attain this. For k1 > 1, we cannot even obtain a feasible solution for small

values for k2.

A positive point is that the average predicted rating is always above 4, even when no threshold is used.

The parameter values that result in the best intersection distance have a relatively low APR of about 4.2,

which is beaten by pseudo gradient descent and greedy at 4.4, but other parameter values achieve an

APR of as high as 4.7-4.8. This indicates that this method does not compromise too much on relevance.

Also, the tuning of the parameters can be viewed as choosing the approprate relevance and diversity

requirement.

We also observe that for the same parameter values, using a threshold does not necessarily improve the

APR. This is possible because the systems are evaluated only on a sample of users. If the same optimum

value to the min cost flow problem is obtained with and without the threshold, but with the sampled

users having lower ratings, then it is possible that the performance of the method with a threshold is

worse. Since the APR without the use of a threshold exceeds the set threshold of 3, and we are unable

to find feasible solutions for larger thresholds, it appears that the threshold is not particularly useful. For

ALSWR, even at a threshold of 3, there is no solution.

In the Netflix dataset, there is a dramatic improvement in intersection distance on using this method,

with intersection distances falling as low as 0.1-0.2 without a significant drop in APR. Coverage is also

significantly higher. On the downside, in many cases, the APR is lower than other methods almost by

a magnitude of 0.5. The exception is when the baseline is ItemBased, where it actually performs better

than all except the baseline.
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We would expect that on increasing N , the intersection distance would be lowered, as there is more

scope for improving diversity. However, in the case of the min cost flow problem, it actually increases

the difficulty of finding a solution, hence it is actually possible for the intersection distance to worsen,

or for there to be no solution to the problem. Both these cases are seen in the experimental results.

There are, however, some disadvantages to this method. Unlike the pseudo-gradient descent and greedy

methods, this method precomputes recommendation lists for all users. That is, it is an offline system. It

may be cumbersome to update recommendation lists frequently using new information. Further, since

there is a need to transfer the complete predicted rating matrix from the baseline recommenders to the

min cost flow solver, the system scales very poorly in the size of the matrix.

Also, the intersection distance obtained by randomly sampling a few users need not be the same as that

obtained by considering all users. However, the value on a random sample is more useful to compare

with the performance of other systems because in reality, not all users use a recommedation system with

the same frequency.

6.3 Joint Optimization of Relevance and Diversity

Instead of performing a secondary minimization of intersection distance by bounding the number of

times each item gets recommended, we would like to directly minimize intersection distance. The

following formulation attempts to optimize a weighted combination of total rating of recommended

items and the unnormalized intersection distance.

6.3.1 Formulation

Consider the minimum cost flow problem, shown in figure 6.2, on the flow network G = (V,E) with

V = U ∪ I ∪ {S,D}, where U is the set of users, I is the set of items, and S and D are two special

nodes.
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Figure 6.2: Min cost flow problem for minimizing a weighted combination of total rating and unnormal-
ized intersection distance

The balances at the nodes are as follows

b(v) =



−N , v ∈ U[
N |U|
n

]
, v ∈ I

P , v = S

−P , v = D

(6.9)

where P is a large constant.

There is an edge from every item i ∈ I to every user u ∈ U . Also, there is an edge from S to every item

i, from every item i to D and one from S to D. The costs of the edges are as follows -

c(x, y) =



λ2(M − R̂ui) , x ∈ I and y ∈ U

λ1 , x = S and y ∈ I

λ1 , x ∈ I and y = D

0 , x = S and y = D

(6.10)

where λ1 > 0 and λ2 > 0 are tunable parameters and M is a constant such that M > R̂ui ∀ u ∈ U , i ∈

I.
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The capacities of the edges are as follows -

l(x, y) =



1 , x ∈ I and y ∈ U

∞ , x = S and y ∈ I

∞ , x ∈ I and y = D

∞ , x = S and y = D

(6.11)

In any feasible integral flow in this network, the flow X(i, u) can take only values 0 and 1 on an edge

from item i to user u. If X(i, u) = 1, then item i is recommended to user u and otherwise it is not.

Since each user has a demand of N and no outgoing edges, exactly N items will be recommended to

each user. Also, since each edge from an item to a user has a capacity of 1, an item can be recommended

to a user only once. Thus, any solution to the problem is a valid set of recommendation lists.

Further, for each edge (i, u) with a non-zero flow, a cost of λ2(M − R̂ui) is added to the objective.

Summing this over all such edges, we get λ2

(
MN |U| −

∑
u

∑
i∈LN (u)

R̂ui

)
. Minimizing this term is

equivalent to maximizing the total predicted rating of the list.

Also, consider any item i for which ci >
[
N |U|
n

]
. Since, the net outgoing flow from i is ci, and its supply

is
[
N |U|
n

]
, the flow X(S, i) = ci −

[
N |U|
n

]
, so the edge (S, i) contributes a cost of λ1

(
ci −

[
N |U|
n

])
.

Similarly, if ci <
[
N |U|
n

]
, for the supply at i to be fully used up, a flow of

[
N |U|
n

]
− ci must be present

along edge (i,D). Thus, this contributes a cost of λ1

([
N |U|
n

]
− ci

)
. There will also be a flow along

(S,D) for a feasible solution but it can be ignored as this edge has zero cost and infinite capacity. Thus,

each item contributes an additional λ1

∣∣∣ci − [N |U|n

]∣∣∣ to the total cost. Minimizing this is approximately

equivalent to minimizing the intersection distance because

λ1

∣∣∣∣ci − N |U|
n

∣∣∣∣ =
λ1

N |U|

∣∣∣∣ ci
N |U|

− 1

n

∣∣∣∣
⇒
∑
i

λ1

∣∣∣∣ci − N |U|
n

∣∣∣∣ =
λ1

N |U|
∑
i

∣∣∣∣ ci
N |U|

− 1

n

∣∣∣∣
=

λ1

N |U|
∑
i

∣∣∣∣xi − 1

n

∣∣∣∣
=

2λ1

N |U|
DI(x) ∝ DI(x) (as λ > 0)

It has been assumed that either there is flow on the edge (S, i) or on (i,D) but not both. Since there is

an edge (S,D) of cost 0, in any optimal solution, the above holds. But for a general flow, there may be
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redundant flow from S to i that completely flows back to D, in addition to the flow already accounted

for. Then, for each item i, this redundant flow, say wi, contributes to a cost of 2λ1wi.

Hence, the complete objective being minimized is

Z = λ2

MN |U| −
∑
u

∑
i∈LN (u)

R̂ui


+ λ1

∑
i

∣∣∣∣ci − [N |U|n

]∣∣∣∣+ 2λ1

∑
i

wi

Since in an optimal solution, wi = 0 ∀ i, minimizing this objective is approximately equivalent to min-

imizing a weighted combination of the total rating of the lists (relevance) and the intersection distance,

with the parameters λ1 and λ2 used to determine the relative importance of each.

6.3.2 Experiments

This method was also tested using the min cost flow solver from Google OR tools and the base rec-

ommendation systems available in Apache Mahout. The following are the results on the MovieLens

dataset. Double Obj:l1-l2 refers to an experiment with λ1 = l1 and λ2 = l2. The best results from

earlier methods have been included for the sake of comparison. A graphical representation of the same

is available in Appendix E.
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Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.993 12.2 4.996 0.983 29.2 4.741

Random 0.952 81.0 4.461 0.905 161.6 4.278

Pseudo Gradient Descent 0.944 100.0 4.449 0.898 177.0 4.274

Greedy 0.945 101.6 4.451 0.9 179.0 4.275

Min Cost Flow:0-6 0.621 638.0 4.002 - - -

Min Cost Flow:0-12 0.826 293.0 4.843 0.675 546.0 4.501

Double Obj:1-1 0.549 759.0 3.062 0.357 1160.0 3.113

Double Obj:1-2 0.605 664.2 4.358 0.396 1092.8 3.966

Double Obj:1-3 0.646 595.8 4.469 0.646 644.0 4.502

Double Obj:1-4 0.733 449.4 4.627 0.686 571.0 4.558

Double Obj:1-5 0.757 409.2 4.518 0.695 559.2 4.552

Double Obj:1-6 0.753 415.0 4.557 0.7 551.2 4.714

Double Obj:1-7 0.743 432.2 4.614 0.684 572.4 4.648

Double Obj:1-8 0.746 427.4 4.574 0.689 569.2 4.59

Double Obj:1-9 0.729 456.4 4.626 0.687 571.6 4.555

Double Obj:1-10 0.742 434.6 4.609 0.681 578.2 4.662

Table 6.11: Min cost flow double objective method on MovieLens : Baseline - ItemAverage

Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.993 12.2 4.996 0.983 29.2 4.741

Random 0.95 83.4 4.452 0.904 164.0 4.275

Pseudo Gradient Descent 0.944 100.0 4.449 0.898 177.0 4.274

Greedy 0.945 101.6 4.451 0.9 179.0 4.275

Min Cost Flow:0-6 0.621 638.0 4.002 - - -

Min Cost Flow:0-12 0.826 293.0 4.843 0.675 546.0 4.501

Double Obj:1-1 0.549 759.0 3.062 0.357 1160.0 3.113

Double Obj:1-2 0.605 664.2 4.358 0.396 1092.8 3.966

Double Obj:1-3 0.646 595.8 4.469 0.646 644.0 4.502

Double Obj:1-4 0.733 449.4 4.627 0.686 571.0 4.558

Double Obj:1-5 0.757 409.2 4.518 0.695 559.2 4.552

Double Obj:1-6 0.753 415.0 4.557 0.7 551.2 4.714

Double Obj:1-7 0.743 432.2 4.614 0.684 572.4 4.648

Double Obj:1-8 0.746 427.4 4.574 0.689 569.2 4.59

Double Obj:1-9 0.729 456.4 4.626 0.687 571.6 4.555

Double Obj:1-10 0.742 434.6 4.609 0.681 578.2 4.662

Table 6.12: Min cost flow double objective method on MovieLens : Baseline - ItemUserAverage
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Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.817 308.2 5.0 0.696 536.6 5.0

Random 0.679 539.6 4.994 0.543 811.6 4.914

Pseudo Gradient Descent 0.539 966.0 4.996 0.472 1218.0 4.914

Greedy 0.527 1009.6 4.993 0.465 1229.4 4.915

Min Cost Flow:0-6 0.603 668.0 4.518 - - -

Min Cost Flow:0-12 0.704 498.0 4.544 0.685 529.0 4.51

Double Obj:1-1 0.549 759.0 3.153 0.357 1160.0 3.197

Double Obj:1-2 0.561 738.0 4.552 0.377 1125.4 4.556

Double Obj:1-3 0.549 759.4 4.549 0.376 1128.2 4.551

Double Obj:1-4 0.554 750.4 4.545 0.374 1129.8 4.526

Double Obj:1-5 0.552 753.4 4.553 0.381 1115.8 4.532

Double Obj:1-6 0.557 744.6 4.554 0.376 1126.0 4.526

Double Obj:1-7 0.557 745.4 4.544 0.372 1130.6 4.554

Double Obj:1-8 0.553 752.6 4.554 0.378 1124.6 4.542

Double Obj:1-9 0.556 746.8 4.534 0.379 1123.4 4.543

Double Obj:1-10 0.559 741.8 4.544 0.377 1127.0 4.542

Table 6.13: Min cost flow double objective method on MovieLens : Baseline - ItemBased

Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.863 229.6 3.948 0.819 305.0 3.771

Random 0.845 261.4 3.664 0.799 338.0 3.621

Pseudo Gradient Descent 0.794 346.0 3.621 0.758 407.0 3.585

Greedy 0.771 395.4 3.664 0.745 457.4 3.623

Min Cost Flow:0-6 0.61 656.0 3.463 - - -

Min Cost Flow:0-12 0.846 259.0 4.907 0.669 556.0 4.648

Double Obj:1-1 0.549 759.0 0.239 0.357 1160.0 0.297

Double Obj:1-2 0.629 624.2 4.629 0.512 881.8 4.439

Double Obj:1-3 0.656 578.0 4.725 0.563 789.8 4.597

Double Obj:1-4 0.7 505.2 4.845 0.641 649.4 4.71

Double Obj:1-5 0.693 515.6 4.839 0.642 648.6 4.709

Double Obj:1-6 0.709 489.0 4.842 0.637 656.4 4.71

Double Obj:1-7 0.7 505.2 4.843 0.63 665.8 4.707

Double Obj:1-8 0.696 511.6 4.842 0.632 662.0 4.709

Double Obj:1-9 0.701 503.6 4.844 0.641 649.2 4.707

Double Obj:1-10 0.708 491.6 4.845 0.638 653.4 4.709

Table 6.14: Min cost flow double objective method on MovieLens : Baseline - UserBased
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Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.885 194.2 4.698 0.834 294.8 4.586

Random 0.833 280.4 4.427 0.758 426.4 4.286

Pseudo Gradient Descent 0.778 460.0 4.412 0.731 647.0 4.263

Greedy 0.777 480.4 4.424 0.733 648.6 4.286

Min Cost Flow:0-6 0.605 665.0 3.711 - - -

Min Cost Flow:0-12 0.783 365.0 4.141 0.677 543.0 4.076

Double Obj:1-1 0.549 759.0 2.953 0.357 1160.0 3.004

Double Obj:1-2 0.551 754.8 3.77 0.361 1155.4 3.705

Double Obj:1-3 0.599 674.6 3.956 0.427 1036.6 3.89

Double Obj:1-4 0.642 602.4 4.094 0.525 854.8 4.071

Double Obj:1-5 0.643 599.8 4.104 0.518 869.6 4.085

Double Obj:1-6 0.646 595.6 4.094 0.516 871.6 4.07

Double Obj:1-7 0.643 600.8 4.087 0.513 877.4 4.06

Double Obj:1-8 0.646 594.6 4.093 0.526 855.2 4.071

Double Obj:1-9 0.644 598.2 4.102 0.518 868.8 4.078

Double Obj:1-10 0.646 595.8 4.1 0.524 860.4 4.072

Table 6.15: Min cost flow double objective method on MovieLens : Baseline - ALSWR

The results on the Netflix dataset are as follows -

Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.985 17.25 4.26 0.973 31.6 4.183

Random 0.941 67.25 4.03 0.891 126.8 3.909

Pseudo Gradient Descent 0.941 68.0 4.03 0.891 130.0 3.911

Greedy 0.94 71.5 4.028 0.89 136.0 3.909

Min Cost Flow:0-37 0.207 1070.0 3.917 - - -

Min Cost Flow:0-73 - - - 0.429 782.0 4.278

Double Obj:1-1 0.207 1052.5 3.135 0.14 1093.6 3.128

Double Obj:1-2 0.353 949.0 4.3 0.194 1062.8 3.837

Double Obj:1-3 0.38 903.25 4.305 0.374 940.4 4.171

Double Obj:1-4 0.613 645.25 4.606 0.7 656.6 4.485

Double Obj:1-5 0.612 644.0 4.587 0.697 659.0 4.508

Double Obj:1-6 0.618 639.5 4.612 0.701 657.0 4.463

Double Obj:1-7 0.619 637.25 4.578 0.698 655.6 4.466

Double Obj:1-8 0.621 643.25 4.538 0.696 656.6 4.497

Double Obj:1-9 0.612 643.5 4.61 0.703 659.0 4.467

Double Obj:1-10 0.622 640.75 4.556 0.699 667.0 4.472

Table 6.16: Min cost flow double objective method on Netflix : Baseline - ItemAverage
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Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.985 17.4 4.26 0.973 31.6 4.183

Random 0.941 67.4 4.027 0.891 124.8 3.911

Pseudo Gradient Descent 0.941 68.0 4.03 0.891 130.0 3.911

Greedy 0.941 71.0 4.028 0.89 136.0 3.909

Min Cost Flow:0-37 0.207 1070.0 3.917 - - -

Min Cost Flow:0-73 - - - 0.429 782.0 4.278

Double Obj:1-1 0.21 1055.2 3.135 0.14 1093.6 3.128

Double Obj:1-2 0.353 945.0 4.3 0.194 1062.8 3.837

Double Obj:1-3 0.384 897.0 4.311 0.374 940.4 4.171

Double Obj:1-4 0.614 643.0 4.605 0.7 656.6 4.485

Double Obj:1-5 0.612 641.8 4.587 0.697 659.0 4.508

Double Obj:1-6 0.617 637.6 4.611 0.701 657.0 4.463

Double Obj:1-7 0.618 635.0 4.578 0.698 655.6 4.466

Double Obj:1-8 0.62 641.0 4.541 0.696 656.6 4.497

Double Obj:1-9 0.611 640.8 4.609 0.703 659.0 4.467

Double Obj:1-10 0.621 638.4 4.557 0.699 667.0 4.472

Table 6.17: Min cost flow double objective method on Netflix : Baseline - ItemUserAverage

Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.788 316.5 4.611 0.721 490.0 4.36

Random 0.606 595.25 4.055 0.473 889.25 3.866

Pseudo Gradient Descent 0.588 844.0 4.04 0.459 1050.0 3.855

Greedy 0.586 835.0 4.052 0.457 1053.5 3.865

Min Cost Flow:0-37 0.199 1069.0 4.218 - - -

Min Cost Flow:0-73 - - - 0.401 837.0 4.359

Double Obj:1-1 0.207 1052.5 3.363 0.137 1093.25 3.36

Double Obj:1-2 0.203 1063.0 4.243 0.144 1098.5 4.068

Double Obj:1-3 0.208 1064.0 4.251 0.14 1096.75 4.065

Double Obj:1-4 0.261 1039.75 4.425 0.236 1047.5 4.264

Double Obj:1-5 0.265 1036.5 4.427 0.25 1019.5 4.265

Double Obj:1-6 0.271 1025.5 4.429 0.222 1078.0 4.265

Double Obj:1-7 0.268 1019.0 4.426 0.226 1088.5 4.265

Double Obj:1-8 0.267 1030.25 4.427 0.249 1025.0 4.263

Double Obj:1-9 0.286 994.25 4.427 0.251 1022.5 4.265

Double Obj:1-10 0.269 1026.25 4.427 0.253 1016.0 4.266

Table 6.18: Min cost flow double objective method on Netflix : Baseline - ItemBased
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Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.673 487.667 3.913 0.641 597.333 3.498

Random 0.645 522.667 3.428 0.638 602.667 3.434

Pseudo Gradient Descent 0.588 844.0 4.04 0.459 1050.0 3.855

Greedy 0.638 612.0 3.434 0.638 612.0 3.434

Min Cost Flow:0-37 0.194 1089.0 3.735 - - -

Min Cost Flow:0-73 - - - 0.403 842.0 4.504

Double Obj:1-1 0.208 1053.333 0.264 0.139 1093.667 0.258

Double Obj:1-2 0.293 1010.667 4.346 0.363 1028.667 4.299

Double Obj:1-3 0.393 895.0 4.575 0.387 999.667 4.348

Double Obj:1-4 0.507 760.667 4.71 0.504 872.0 4.476

Double Obj:1-5 0.508 760.333 4.712 0.503 875.667 4.476

Double Obj:1-6 0.504 761.333 4.71 0.498 881.0 4.476

Double Obj:1-7 0.501 761.667 4.71 0.497 877.333 4.476

Double Obj:1-8 0.506 762.667 4.711 0.504 872.667 4.476

Double Obj:1-9 0.507 760.333 4.71 0.503 874.667 4.476

Double Obj:1-10 0.51 759.667 4.71 0.505 871.0 4.477

Table 6.19: Min cost flow double objective method on Netflix : Baseline - UserBased

Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.852 223.6 4.249 0.823 298.2 4.172

Random 0.78 312.2 4.049 0.724 443.0 3.933

Pseudo Gradient Descent 0.772 429.0 4.038 0.721 548.0 3.921

Greedy 0.774 432.6 4.048 0.722 562.2 3.933

Min Cost Flow:0-37 0.199 1070.0 3.543 - - -

Min Cost Flow:0-73 - - - 0.432 729.0 3.702

Double Obj:1 0.21 1055.2 3.157 0.14 1093.6 3.148

Double Obj:2 0.209 1061.0 3.559 0.142 1096.6 3.495

Double Obj:3 0.248 1020.8 3.634 0.189 1068.8 3.581

Double Obj:4 0.343 908.8 3.773 0.289 974.2 3.721

Double Obj:5 0.34 908.0 3.773 0.29 970.6 3.718

Double Obj:6 0.335 910.6 3.772 0.288 967.2 3.718

Double Obj:7 0.338 909.6 3.773 0.288 970.6 3.721

Double Obj:8 0.341 909.4 3.774 0.29 968.8 3.719

Double Obj:9 0.338 915.0 3.772 0.288 969.2 3.718

Double Obj:10 0.345 908.4 3.775 0.292 972.4 3.722

Table 6.20: Min cost flow double objective method on Netflix : Baseline - ALSWR
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6.3.3 Observations and Discussion

In the MovieLens dataset, we observe that the best values of intersection distance obtained outperform

those of earlier methods by a noticeable margin. This is expected because we are directly minimizing

the intersection distance, not a maintaining a surrogate condition that would keep intersection distance

low. On the Netflix dataset however, the performance of the earlier min cost flow based method was

found to be better.

On keeping λ1 constant, if we increase λ2, we observe that the intersection distance generally increases,

but so does the average predicted rating. Thsi is because, for low values of λ2, the intersection distance

term dominates the cost of the min cost flow problem, but as it increases, the importance given to the

total rating of all recommended items increases. As we can see, λ2 = 1 sometimes results in a very

poor average predicted rating, but even increasing it to 1 or 2 is sufficient to make this comparable to

other methods. Also, at these values, the intersection distance is still lower than that obtained by other

methods.

It is observed that at λ1 = 1, the nature of the min cost flow solution is such that the only supply taken

from the supply node is to satisfy the deficit that arises because the total demand over the user nodes is

less than the total supply at the item nodes. Thus increasing λ1 will only result in the algorithm returning

either the same solution, or another optimum solution with the same value. Also, since it is the ratio λ1
λ2

that actually determines the relative weights, decreasing λ1 is also not of much use. Since λ1 and λ2

are constrained to be integers for the min cost flow problem to have an integral optimum solution, the

examined values show the best possible intersection distance attainable in this formulation.

A disadvantage of this method is that it is not possible to prove bounds on the resultant intersection

distance. For instance, if the ratings are skewed in such a manner that N items have a significantly

higher rating than all other items, for some values of λ1 and λ2, it may be optimal to recommend these

N items to all users, drawing supply from the supply node. However, if this is really the nature of the

dataset in question, optimizing intersection distance may not be the best objective in any case.
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CHAPTER 7

Gradient Descent Methods to Optimize Intersection Distance

So far, all the methods examined take ratings predicted by a standard recommendation system and re-

rank items in suitable ways so that the resultant set of recommendation lists has an improved intersection

distance without much loss in relevance. It would be more desirable to modify the system so that the

scores it predicts are directly indicative of both relevance and diversity. To do this, we have to choose

a suitable parameterization of the system that enables us to compute a measure of both relevance and

diversity and learn parameters that optimize both.

A common parameterization used in literature that appears to extend to different objectives is formu-

lating the predicted rating as R̂ui ∼ N (UTu Vi, σ
2). That is, the predicted rating of user u for item i is

sampled from the normal distribution centered at the dot product of a user latent factor Uu and an item

latent factor Vi, with standard deviation σ.

7.1 A Permutation-based Idea

Suppose we are generating predicted ratings using R̂ui ∼ N (UTu Vi, σ
2) and to each user u, we would

like to recommend the top-N items according to this rating. In this setting, we need to calculate the

intersection distance as a function of Uu and Vi. Since ratings are probabilistic, ideally we should

compute a distribution over the possible values of intersection distance. A simpler, but perhaps not as

accurate method, would be to compute and maximize the expected value of the intersection distance, or

an upper bound of the same. The following is an attempt at computing an upper bound on the expected

intersection distance.

For each user u, the predicted ratings induce an ordering over items. This ordering can be viewed as

some permutation of the list of all items in the system. Consider a permutation ρ = (i1, i2, i3, . . . in).

Let Pr(ρ | u) be the probability that the permutation ρ indicates the preference ordering of items for

user u. ρ = (i1, i2, i3, . . . in) will be the preference ordering for user u if, regardless of the value of the

rating for item in, the rating of item in−1 is higher than that, the rating of item in−2 is higher than that of

item in−1 and so on until item i1 has the highest rating. If we assume ratings of two items for the same



user are independent given the latent factor matrices U and V , we get

Pr(ρ | u) =

∫
rn

Pr(R̂uin = rn)

 ∫
rn−1≥rn

Pr(R̂uin−1
= rn−1)

. . . ∫
r2≥r3

Pr(R̂ui2
= r2)

 ∫
r1≥r2

Pr(R̂ui1
= r1)dr1

 dr2 . . .

 drn−1

 drn

Consider the term

∫
r2≥r3

Pr(R̂ui2 = r2)

 ∫
r1≥r2

Pr(R̂ui1 = r1)dr1

 dr2

=

∫
r2≥r3

1

σ
φ

(
r2 − UTu Vi2

σ

)
Q

(
r2 − UTu Vi1

σ

)
dr2

(where φ(x) and Q(x) are respectively the PDF of the standard

normal distribution and the Gaussian Q function, that is, Q(x) = 1− Φ(x))

≤
∞∫

r2=r3

1

σ
φ

(
r2 − UTu Vi2

σ

)
e
− 1

2

(
r2−U

T
u Vi1
σ

)2

dr2

(as Q(x) ≤ e
−x2

2 using Chernoff bounds)

=

∞∫
r2=r3

1√
2πσ

e
−1

2σ2 ((r2−UTu Vi2 )2+(r2−UTu Vi1 )2)dr2 (7.1)

Using standard results on the integrals of Gaussian functions, we can prove the following lemma. The

proof can be found in Appendix A.

Lemma 7.

I =

∞∫
t

1√
2πσ

e
−1

2σ2 ((x−µ1)2+(x−µ2)2)dx ≤
√
π φ

(
µ√
2

)
(7.2)

If we substitute this bound in 7.1, assuming n is odd, item pairs, i1 and i2, i3 and i4 and so on, get

58



converted to a constant in sequence and hence get taken out of the integral. Thus, we get,

Pr(ρ | u) ≤
(√
π
)n−1

2 φ

(
µ12√

2

)
φ

(
µ34√

2

)
. . . φ

(
µn−2,n−1√

2

)∫
rn

Pr(R̂uin = rn)drn

=
(√
π
)n−1

2 φ

(
µ12√

2

)
φ

(
µ34√

2

)
. . . φ

(
µn−2,n−1√

2

)

=
(√
π
)n−1

2

n−1
2∏
j=1

φ

(
µ2j−1,2j√

2

)
where µ2j−1,2j =

µ2j−1 − µ2j

σ
=

1

σ
UTu (Vi2j−1 − Vi2j )

Note that the permutation ρ determines which item is in which position. In future, we refer to V (ρ)
ij

as

the item factor corresponding to the jth item according to permutation ρ and µ(ρ)
2j−1,2j =

µ
(ρ)
2j−1−µ

(ρ)
2j

σ =

1
σU

T
u (V

(ρ)
i2j−1

− V (ρ)
i2j

)

Let Tk(ρ, i) be the event that i is in the top k items in the permutation ρ. Then,

E(ci) =
∑
u

∑
ρ

TN (ρ, i)Pr(ρ | u)

⇒ E(xi) =
1

N |U|
∑
u

∑
ρ

TN (ρ, i)Pr(ρ | u) (7.3)

Then, the following lemma, proved in Appendix A, can be used to bound the intersection distance

Lemma 8. For any random variable x ∈ [0, 1],

E(|x− a|) ≤ E[x]
(1− a− a2)

1− a
+

2a2 − a
1− a

(7.4)

This is useful if 1 − a − a2 ≥ 0 ⇒ a2 + a − 1 ≤ 0 ⇒ −1−
√

5
2 ≤ a ≤ −1+

√
5

2 . Consider a = 1
n . Then

since a ≥ 0, a ≥ −1−
√

5
2 . Also, a ≤ −1+

√
5

2 ⇒ n ≥ 2
−1+

√
5

= 1.618. Thus, for n ≥ 2, the following

result is valid.

Substituting a = 1
n in 7.4, we get

E

[
xi −

1

n

]
≤

(
1− 1

n −
1
n2

)
1− 1

n

+
2
n2 − 1

n

1− 1
n

=
n2 − n− 1

n(n− 1)
E[xi]−

n2 − 2

n(n− 1)
(7.5)
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Now, intersection distance,

DI(x) =
1

2

n∑
i=1

∣∣∣∣xi − 1

n

∣∣∣∣
⇒ E[DI(x)] ≤ 1

2

n∑
i=1

n2 − n− 1

n(n− 1)
E[xi]−

1

2
(n)

n2 − 2

n(n− 1)

=
n2 − n− 1

2n(n− 1)

n∑
i=1

E[xi]−
n2 − 2

2(n− 1)
(7.6)

Consider equation 7.3. Any permutation ρ adds (
√
π)

n−1
2

n−1
2∏
j=1

φ

(
µ

(p)
2j−1,2j√

2

)
to the numerator of E[xi]

for i ∈ {i1, i2 . . . iN}. Thus, it adds the term N times to
n∑
i=1

E[xi]. Thus,

n∑
i=1

E[xi] ≤
1

N |U|
∑
u

∑
ρ

N (π)
n−1

4

n−1
2∏
j=1

φ

(
µ

(ρ)
2j−1,2j√

2

)

=
(π)

n−1
4

|U|
∑
u

∑
ρ

n−1
2∏
j=1

φ

(
µ

(ρ)
2j−1,2j√

2

)

=
(π)

n−1
4

|U|
∑
u

∑
ρ

n−1
2∏
j=1

1√
2π
e
− 1

2

(
µ

(p)
2j−1,2j√

2

)2

=
(π)

n−1
4

|U|
1

(2)
n−1

4 (π)
n−1

4

∑
u

∑
ρ

e
− 1

4σ2

n−1
2∑
j=1

(
UTu

(
V

(ρ)
i2j−1

−V (ρ)
i2j

)(
)2

=
1

2
n−1

4 |U|

∑
u

∑
ρ

e
− 1

4σ2

n−1
2∑
j=1

(
UTu

(
V

(ρ)
i2j−1

−V (ρ)
i2j

))2

(7.7)

Let B and F respectively be the bounds on
n∑
i=1

E[xi] and E [DI(x)] from equations 7.7 and 7.6 respec-

tively. Then,

B =
(n2 − n− 1)

2n(n− 1)
F − n2 − 2

2(n− 1)
(7.8)

To learn parameters Uu and Vi by gradient descent, we need ∂B
∂Uu

and ∂B
∂Vi

. Now,

∂B

∂Uu
=

(n2 − n− 1)

2n(n− 1)

∂F

∂Uu
(7.9)
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From the summation over all users, only the term associated with user uwill have a non-zero component

in the derivative with respect to Uu. To simplify 7.9, we need ∂f
∂x for f(x) = 1

ce
−(xT a)2+b. Suppose

x = (x1 x2 . . . xn)T . Now,

∂f

∂xi
=

1

c
e−(xT a)2+b (−2ai)

⇒ ∂f

∂x
=
−2

c

(
e−(xT a)2+b

)
aT (7.10)

Using 7.10 to obtain ∂F
∂Uu

and substituting in 7.9,

∂B

∂Uu
=

(n2 − n− 1)

2n(n− 1)

1

2
n−1

4 |U|

∑
p

e− 1
4σ2

n−1
2∑
j=1

(
UTu

(
V

(p)
i2j−1

−V (p)
i2j

))2

(−2

σ2

)n−1
2∑
j=1

V
(p)T

2j−1 − V
(p)T

2j


= −(n2 − n− 1)

n(n− 1)σ2

1

2
n−1

4 |U|

∑
p

G(p)

n−1
2∑
j=1

V
(p)T

2j−1 − V
(p)T

2j

 (7.11)

where G(p) = e
− 1

4σ2

n−1
2∑
j=1

(
UTu

(
V

(p)
i2j−1

−V (p)
i2j

))2

. Note that if we obtain permutation p′ by swapping items

i2j and i2j−1 for any j = 1, 2, . . . n−1
2 , G(p) = G(p′). Consider all such permutations obtained by

swapping items in this manner. For any fixed j0 ∈
(
1, 2, . . . n−2

2

)
, in exactly half of these permutations,

items i2j0−1 (in p) and i2j0 are at positions 2j0 − 1 and 2j0 respectively and in the other half, they are

respectively at positions 2j0 and 2j0 − 1. Hence, half of them will contibute V (p)T
i2j0−1

− V (p)T
i2j0

and the

other half will contribute V (p)T
i2j0

− V (p)T
i2j0−1

. Thus, the sum
∑
p
G(p)

(n−1
2∑
j=1

V
(p)T

2j−1 − V
(p)T

2j

)
= 0 for all

such permutations. Since we can partition the set of all permutations into subsets, each of which satisfies

this property, the total sum
∑
p
G(p)

(n−1
2∑
j=1

V
(p)T

2j−1 − V
(p)T

2j

)
is also equal to 0.

So we get ∂B
∂Uu

= 0, which cannot be used for gradient descent.

We did attempt to see if any of the upper bounds used in the derivation could be tightened further but

they did not lead to tractable expansions. Hence, we decided to work on a practically useful relaxation

of the problem, which is discussed in the following section.
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7.2 Using Rating Thresholds

Consider the following relaxation to the problem at hand. Instead of having to recommend exactly N

items to each user, we recommend an item to a user u if the predicted rating of the user for the item is

greater than some threshold β. In this setting, we derive an error function that captures a combination

of rating accuracy and intersection distance. Parameters of the recommendation system are then learned

to minimize this error using gradient descent.

7.2.1 Formulation

We assume that the predicted ratings are distributed as R̂ui ∼ N (UTu Vi, σ
2), where U and V are the

matrices of latent factors corresponding to users and items respectively. Squared loss or log-likelihood of

the known ratings can be used as a measure of rating accuracy. The measure for diversity is intersection

distance. Let R be the matrix of known ratings and K = {(u, i) : u ∈ U , i ∈ I, Rui 6= φ}.

Let E(R̂) be the error term we are interested in for rating accuracy. We want to use an error term (to

be minimized) because the diversity objective, intersection distance is to be minimized and we would

like to use a weighted linear combination of the two. Since we want to assume a probabilistic model for

the ratings, log-likelihood seems to be a better choice of accuracy measure than squared loss. Since we

want an objective for minimization, we use the negative of the log likelihood. That is,

E(R̂) = − log(Pr(R | U, V ))

A common assumption used to make the above error function more tractable is that ratings of different

user-item pairs are independent given the latent factors. Thus, we have,

E(R̂) = − log

 ∏
(u,i)∈K

Pr(Rui | U, V )


= −

∑
(u,i)∈K

log (Pr(Rui | U, V ))

= −
∑

(u,i)∈K

log

(
1

σ
φ

(
Rui − UTu Vi

σ

))

= −
∑

(u,i)∈K

(
− log σ − 1

2

(
Rui − UTu Vi

σ

)2

− 1

2
log 2π

)
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Ignoring the constants, it is sufficient to consider

E(R̂) =
1

2

∑
(u,i)∈K

(
Rui − UTu Vi

σ

)2

Taking partial derivative with respect to each parameter to be learned, we get,

∂E(R̂)

∂Uu
=

∑
i

(
1

2

)
(2)

(
Rui − UTu Vi

σ

)(
−1

σ

)
V T
i

= −
∑
i

(
Rui − UTu Vi

σ

)
V T
i =

∑
i

(
UTu Vi −Rui

σ

)
V T
i

∂E(R̂)

∂Vi
=

∑
u

(
1

2

)
(2)

(
Rui − UTu Vi

σ

)(
−1

σ

)
UTu

= −
∑
u

(
Rui − UTu Vi

σ

)
UTu =

∑
u

(
UTu Vi −Rui

σ

)
UTu

Calculating the gradient of intersection distance is done as follows. Let pui be the probability that item

i is recommended to user u. Then,

pui = Pr(R̂ui ≥ β) = 1− Φ

(
β − UTu Vi

σ

)

Let ci be the expected number of times item i is recommended and let c be the expected number of items

recommended overall. Then,

ci =
∑
u

pui, c =
∑
i

ci

We have proved in Appendix A that,

∂DI

∂Uu
=

∑
i

∣∣∣∣cic − 1

n

∣∣∣∣ ( n

(nci − c)c

)(
c

σ2
φ

(
β − UTu Vi

σ

)
V T
i −

ci
σ2

∑
i′

φ

(
β − UTu Vi′

σ

)
V T
i′

)
∂DI

∂Vi
=

n

c σ2

(∑
u

φ

(
β − UTu Vi

σ

)
UTu

)((
c

nci − c

) ∣∣∣∣cic − 1

n

∣∣∣∣−∑
i′

∣∣∣∣ci′c − 1

n

∣∣∣∣ ( ci′

nci′ − c

))

Net error to minimize, E = αE(R̂) + (1 − α)DI where α is a parameter that decides how much
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importance is given to each objective. Then, we have,

∂E

∂Uu
= α

∂E(R̂)

∂Uu
+ (1− α)

∂DI

∂Uu

=
α

σ2

∑
i

(UTu Vi −Rui)V T
i +

1− α
σ2

∑
i

∣∣∣∣cic − 1

n

∣∣∣∣ ( n

(nci − c)c

)(
c φ

(
β − UTu Vi

σ

)
V T
i − ci

∑
i′

φ

(
β − UTu Vi′

σ

)
V T
i′

)

Also,

∂E

∂Vi
= α

∂E(R̂)

∂Vi
+ (1− α)

∂DI

∂Vi

=
α

σ2

∑
u

(UTu Vi −Rui)UTu +

1− α
σ2

(n
c

)(∑
u

φ

(
β − UTu Vi

σ

)
UTu

)((
c

nci − c

) ∣∣∣∣cic − 1

n

∣∣∣∣−∑
i′

∣∣∣∣ci′c − 1

n

∣∣∣∣ ( ci′

nci′ − c

))

We can learn the parameters of the system using gradient descent as follows -

Uu ← Uu − η
∂E

∂Uu

Vi ← Vi − η
∂E

∂Vi

The system has a number of parameters to be tuned manually -

• η - Step size for gradient descent

• α - Weight given to rating accuracy

• σ - Variance of distribution used for predicting ratings

• β - Rating threshold above which items are recommended

• K - Number of latent dimensions

Note that the ”ratings” predicted by this system need not necessarily be equal to the users’ actual ratings,

since we explicitly offset the error function using intersection distance. The purpose of predicting such

”ratings” is that it avoids having to explicitly store a recommendation list for each user, as would be

required by methods like the min cost flow method.
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7.2.2 Experiments

Since this system has a very large number of parameters, the following grid-search based method was

used. First, for a large number of possible parameter settings - 50, 100 and 150 latent features, rating

thresholds of 3, 3.5 and 4 and σ, α, η ∈ {0.1, 0.2 . . . 0.9} were run for ten iterations each of batch

gradient descent. Following this, for each combination of K and β, the best 5 values in terms of inter-

section distance and the best 5 in terms of average predicted rating were taken and these were run for

100 iterations. The results of these parameter values are shown in tables Appendix C.

7.2.3 Observations and Discussion

We observe that there are some parameter settings for which we attain an intersection distance below

0.4, sometimes as low as 0.1-0.2, which is significantly better than those from any other method. The

average predicted rating shows a wider trend. For a few settings, it reaches as high as 4.5-4.6 but it also

attains low values of 3.8-3.9. Some earlier methods have resulted in a higher APR.

We also see that most settings in the set of values selected for a dataset after 10 iterations have the same

or similar values of σ. This possibly suggests that there is a particular value of σ at which the distribution

R̂ui ∼ N (UTu Vi, σ
2) models the true ratings well. We also note that for the MovieLens dataset, most

settings have a low value of α as well. This is unsurprising since a low value of α increases the weightage

given by the objective function to intersection distance. For the Netflix dataset, we find that most settings

have a low value of η. It is possible that the starting point in this case is close a minimum and hence a

low learning rate is required to prevent oscillations. It is also possible that since most of these parameter

settings have a high variance (σ), not much importance can be given to individual observations, which

also calls for a low learning rate. This could also explain why higher values of α are required. Since

ratings can vary significantly from their mean values, a high importance to accuracy of known ratings

would be required to stabilize mean values appropriately.

Overall, the method looks promising. It requires initial tuning of parameters for the dataset, but is

significantly more scalable as it eliminates the need to compute and transfer a complete rating matrix.
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CHAPTER 8

Conclusions and Future Work

In this project, we have identified the deficiencies of intuitive metrics such as coverage and entropy for

the evaluation of the aggregate diversity of a recommender system. We have proved that the intersection

distance of the normalized recommended item count vector to the uniform distribution overcomes these

deficiencies, while being bounded and easy to compute. We have also proposed a number of techniques

for the joint optimization of recommendation list relevance and diversity in terms of intersection distance

and demonstrated their efficacy through experiments on real world datasets.

Some directions for future research would be to examine appropriate non-convex optimization tech-

niques that directly optimize the parameters of a recommender system such that the recommendation

lists it produces have a high intersection distance, which overcome the lack of convergence guarantees

for gradient descent. Another alternative would be to improve the scalability of methods such as the min

cost flow formulation which does directly optimize intersection distance.

To the best of our knowledge, this is one of the few works which optimize aggregate diversity directly

and the first to optimize intersection distance as a metric. A portion of this work is currently under

review at ACM RecSys 2015.



APPENDIX A

Derivations - Gradient Descent Method

The following are the proofs of the lemmas used in the gradient descent methods described in Chapter

7.

A.1 Proof of Lemma 7

Lemma 7 states that

I =

∞∫
t

1√
2πσ

e
−1

2σ2 ((x−µ1)2+(x−µ2)2)dx ≤
√
π φ

(
µ√
2

)
(A.1)

Consider the integral -

I =

∞∫
t

1√
2πσ

e
−1

2σ2 ((x−µ1)2+(x−µ2)2)dx (A.2)

Let x−µ1

σ = y ⇒ dx = σdy. Then

(x− µ1)2

σ2
= y2,

(x− µ2)2

σ2
=

(σy + (µ1 − µ2))2

σ2

Let µ = µ1−µ2

σ . Then
(x− µ2)2

σ2
= (y + µ)2

Also, when x = t, y = t−µ1

σ = t′. Substituting these in A.2, we get

I =

∞∫
t′

1√
2π
e−

y2

2 e−
(y+µ)2

2 dy =
√

2π

∞∫
t′

(
1√
2π
e−

y2

2

)(
1√
2π
e−

(y+µ)2

2

)
dy

=
√

2π

∞∫
t′

φ(y)φ(y + µ)dy



Using,
∫
φ(x)φ(a+ bx)dx = 1

tφ
(
a
t

)
Φ
(
tx+ ab

t

)
+ c where t =

√
1 + b2, we get

I =
√

2π

(
1√
2
φ

(
µ√
2

)
Φ

(√
2y +

µ√
2

)) ∣∣∣∞
t′

=
√
π φ

(
µ√
2

)(
Φ(∞)− Φ

(√
2

(
t− µ1

σ

)
+

µ√
2

))
=
√
π φ

(
µ√
2

)(
1− Φ

(√
2

(
t− µ1

σ

)
+

µ√
2

))
≤
√
π φ

(
µ√
2

)

A.2 Proof of Lemma 8

Lemma 8 states that for any random variable x ∈ [0, 1],

E(|x− a|) ≤ E[x]
(1− a− a2)

1− a
+

2a2 − a
1− a

(A.3)

Suppose we have a random variable x ∈ [0, 1], then, we can bound E[|x− a|] as follows

E(|x− a|) =

1∫
0

|x− a|Pr(x)dx

=

1∫
a

(x− a)Pr(x)dx+

a∫
0

(a− x)Pr(x)dx

=

1∫
0

(x− a)Pr(x)dx−
a∫

0

(x− a)Pr(x)dx+

a∫
0

(a− x)Pr(x)dx

=

1∫
0

xPr(x)dx− a
1∫

0

Pr(x)dx+ 2

a∫
0

(a− x)Pr(x)dx

= E[x]− a+ 2

a∫
0

(a− x)Pr(x)dx (A.4)

x ∈ [0, 1]⇒ 1− x ∈ [0, 1]. Then,

Pr(x ≤ a) = Pr(1− x ≥ 1− a) ≤ 1− E[x]

1− a
(Markov’s inequality)

⇒ Pr(x) ≤ 1− E[x]

1− a
∀ x ≤ a (A.5)
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Substituting from A.5 in A.4, we get,

E(|x− a|) ≤ E[x]− a+ 2

a∫
0

(a− x)
1− E[x]

1− a
Pr(x)dx

= E[x]− a+ 2
1− E[x]

1− a

a∫
0

(a− x)dx

= E[x]− a+ 2
1− E[x]

1− a

(
a2

2

)
= E[x]

(
1− a2

1− a

)
+

(
−a+

a2

1− a

)
= E[x]

(1− a− a2)

1− a
+

2a2 − a
1− a

(A.6)

A.3 Gradient of Intersection Distance

Let pui be the probability that item i is recommended to user u. Then,

pui = Pr(R̂ui ≥ β) = 1− Φ

(
β − UTu Vi

σ

)

Let ci be the expected number of times item i is recommended and let c be the expected number of items

recommended overall. Then,

ci =
∑
u

pui, c =
∑
i

ci

Then,

∂pui
∂Uu

= −φ
(
β − UTu Vi

σ2

)(
−1

σ2

)
V T
i =

1

σ2
φ

(
β − UTu Vi

σ2

)
V T
i

∂pui
∂Vi

= −φ
(
β − UTu Vi

σ2

)(
−1

σ2

)
UTu =

1

σ2
φ

(
β − UTu Vi

σ2

)
UTu

∂pui
∂Uu′

= 0 if u′ 6= u

∂pui
∂Vi′

= 0 if i′ 6= i
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Using this, we get,

∂ci
∂Uu

=
∑
u′

∂pu′i
∂Uu

=
∂pui
∂Uu

+
∑
u′ 6=u

∂pu′i
∂Uu

=
∂pui
∂Uu

=
1

σ2
φ

(
β − UTu Vi

σ2

)
V T
i

∂ci
∂Vi′

= 0 if i′ 6= i

∂ci
∂Vi

=
∑
u

∂pui
∂Vi

=
1

σ2

∑
u

φ

(
β − UTu Vi

σ2

)
UTu

Also, using c =
∑

i ci, we get,

∂c

∂Uu
=

∑
i

∂ci
∂Uu

=
1

σ2

∑
i

φ

(
β − UTu Vi

σ2

)
V T
i

∂c

∂Vi
=

∑
i′

∂ci′

∂Vi
=
∂ci
∂Vi

+
∑
i′ 6=i

∂ci′

∂Vi

=
∂ci
∂Vi

=
1

σ2

∑
u

φ

(
β − UTu Vi

σ2

)
UTu

Intersection distance DI is given by,

DI =
∑
i

∣∣∣∣cic − 1

n

∣∣∣∣
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Taking partial derivativatives with respect to the parameters,

∂DI

∂Uu
=

∑
i

∣∣ ci
c −

1
n

∣∣(
ci
c −

1
n

) ∂

∂Uu

(ci
c

)
=

∑
i

∣∣ ci
c −

1
n

∣∣(
ci
c −

1
n

) c ∂ci∂Uu
− ci ∂c∂Uu

(c)2

=
∑
i

∣∣∣∣cic − 1

n

∣∣∣∣ ( nc

(nci − c)(c)2

)(
c

σ2
φ

(
β − UTu Vi

σ

)
V T
i −

ci
σ2

∑
i′

φ

(
β − UTu Vi′

σ

)
V T
i′

)

=
∑
i

∣∣∣∣cic − 1

n

∣∣∣∣ ( n

(nci − c)c

)(
c

σ2
φ

(
β − UTu Vi

σ

)
V T
i −

ci
σ2

∑
i′

φ

(
β − UTu Vi′

σ

)
V T
i′

)

Also,

∂DI

∂Vi
=

∑
i′

∣∣ ci′
c −

1
n

∣∣( ci′
c −

1
n

) ∂

∂Vi

(ci′
c

)
=

∑
i′

∣∣∣∣ci′c − 1

n

∣∣∣∣ ( n

(nci′ − c)c

)(
c
∂ci′

∂Vi
− ci′

∂c

∂Vi

)
=

∣∣∣∣cic − 1

n

∣∣∣∣ ( n

(nci − c)c

)(
c
∂ci
∂Vi
− ci

∂c

∂Vi

)
−
∑
i′ 6=i

∣∣∣∣ci′c − 1

n

∣∣∣∣ ( nci′

(nci′ − c)c

)
∂c

∂Vi

=

∣∣∣∣cic − 1

n

∣∣∣∣ ( n(c− ci)
(nci − c)c

)
∂ci
∂Vi
−
∑
i′ 6=i

∣∣∣∣ci′c − 1

n

∣∣∣∣ ( nci′

(nci′ − c)c

)
∂ci
∂Vi

=
n

c

∂ci
∂Vi

∣∣∣∣cic − 1

n

∣∣∣∣ ( c− ci
nci − c

)
−
∑
i′ 6=i

∣∣∣∣ci′c − 1

n

∣∣∣∣ ( ci′

nci′ − c

)
=

n

c

∂ci
∂Vi

((
c

nci − c

) ∣∣∣∣cic − 1

n

∣∣∣∣−∑
i′

∣∣∣∣ci′c − 1

n

∣∣∣∣ ( ci′

nci′ − c

))

=
n

c σ2

(∑
u

φ

(
β − UTu Vi

σ

)
UTu

)((
c

nci − c

) ∣∣∣∣cic − 1

n

∣∣∣∣−∑
i′

∣∣∣∣ci′c − 1

n

∣∣∣∣ ( ci′

nci′ − c

))
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APPENDIX B

Tables - Basic Min Cost Flow Method

The following tables show the variation of intersection distance and average predicted rating with the

parameter k2 of the basic min cost flow method described in Section 6.2 on the MovieLens dataset for

different settings.

Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.992 13.0 4.994 0.992 13.0 4.994

Random 0.953 79.0 4.448 0.951 82.0 4.441

Pseudo Gradient Descent 0.944 100.0 4.449 0.898 177.0 4.274

Greedy 0.944 100.0 4.449 0.944 100.0 4.449

Min Cost Flow:0-6 0.621 638.0 4.002 - - -

Min Cost Flow:0-7 0.711 486.0 4.422 - - -

Min Cost Flow:0-8 0.76 403.0 4.649 - - -

Min Cost Flow:0-9 0.798 340.0 4.731 - - -

Min Cost Flow:0-10 0.82 302.0 4.786 - - -

Min Cost Flow:0-11 0.839 271.0 4.873 - - -

Min Cost Flow:0-12 0.826 293.0 4.843 0.675 546.0 4.501

Min Cost Flow:0-13 0.81 320.0 4.83 0.761 402.0 4.738

Min Cost Flow:0-14 0.813 315.0 4.829 0.79 354.0 4.854

Min Cost Flow:0-15 0.814 313.0 4.815 0.806 327.0 4.857

Min Cost Flow:0-16 0.833 281.0 4.816 0.817 307.0 4.827

Min Cost Flow:0-17 0.823 297.0 4.811 0.823 297.0 4.802

Min Cost Flow:0-18 0.834 280.0 4.771 0.822 299.0 4.85

Min Cost Flow:0-19 0.824 296.0 4.785 0.794 347.0 4.788

Min Cost Flow:0-20 0.837 275.0 4.781 0.876 208.0 4.924

Min Cost Flow:1-6 0.781 368.0 4.292 - - -

Min Cost Flow:1-7 0.813 314.0 4.624 - - -

Min Cost Flow:1-8 0.813 315.0 4.661 - - -

Table B.1: Min cost flow bounding method on MovieLens : Baseline - ItemAverage



Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Min Cost Flow:1-9 0.818 306.0 4.749 - - -

Min Cost Flow:1-10 0.878 206.0 4.885 - - -

Min Cost Flow:1-11 0.859 237.0 4.841 - - -

Min Cost Flow:1-12 0.854 246.0 4.857 0.853 247.0 4.866

Min Cost Flow:1-13 0.836 276.0 4.848 0.836 276.0 4.834

Min Cost Flow:1-14 0.817 308.0 4.84 0.834 280.0 4.804

Min Cost Flow:1-15 0.809 321.0 4.804 0.872 216.0 4.887

Min Cost Flow:1-16 0.857 240.0 4.839 0.843 264.0 4.852

Min Cost Flow:1-17 0.869 220.0 4.807 0.851 251.0 4.865

Min Cost Flow:1-18 0.826 292.0 4.799 0.834 279.0 4.764

Min Cost Flow:1-19 0.83 286.0 4.839 0.849 254.0 4.803

Min Cost Flow:1-20 0.867 223.0 4.798 0.855 244.0 4.82

Min Cost Flow Threshold:0-7 0.703 500.0 4.416 - - -

Min Cost Flow Threshold:0-8 0.751 418.0 4.578 - - -

Min Cost Flow Threshold:0-9 0.784 364.0 4.695 - - -

Min Cost Flow Threshold:0-10 0.822 300.0 4.771 - - -

Min Cost Flow Threshold:0-11 0.836 276.0 4.886 - - -

Min Cost Flow Threshold:0-12 0.832 282.0 4.851 0.672 551.0 4.491

Min Cost Flow Threshold:0-13 0.833 281.0 4.855 0.746 428.0 4.726

Min Cost Flow Threshold:0-14 0.828 290.0 4.836 0.779 372.0 4.83

Min Cost Flow Threshold:0-15 0.829 288.0 4.829 0.797 342.0 4.823

Min Cost Flow Threshold:0-16 0.827 291.0 4.835 0.82 302.0 4.813

Min Cost Flow Threshold:0-17 0.849 254.0 4.826 0.825 295.0 4.864

Min Cost Flow Threshold:0-18 0.838 272.0 4.813 0.83 286.0 4.841

Min Cost Flow Threshold:0-19 0.842 266.0 4.806 0.813 314.0 4.793

Min Cost Flow Threshold:0-20 0.82 303.0 4.815 0.823 297.0 4.784

Min Cost Flow Threshold:1-7 0.812 316.0 4.603 - - -

Min Cost Flow Threshold:1-8 0.825 294.0 4.684 - - -

Min Cost Flow Threshold:1-9 0.839 270.0 4.765 - - -

Min Cost Flow Threshold:1-10 0.881 200.0 4.869 - - -

Min Cost Flow Threshold:1-11 0.84 269.0 4.858 - - -

Min Cost Flow Threshold:1-12 0.853 247.0 4.857 0.849 254.0 4.839

Min Cost Flow Threshold:1-13 0.834 279.0 4.829 0.856 243.0 4.845

Min Cost Flow Threshold:1-14 0.841 268.0 4.805 0.85 253.0 4.845

Min Cost Flow Threshold:1-15 0.819 305.0 4.844 0.8 337.0 4.811

Min Cost Flow Threshold:1-16 0.852 249.0 4.868 0.832 283.0 4.837

Min Cost Flow Threshold:1-17 0.859 237.0 4.841 0.831 284.0 4.763

Min Cost Flow Threshold:1-18 0.856 243.0 4.819 0.841 268.0 4.839

Min Cost Flow Threshold:1-19 0.832 283.0 4.767 0.838 272.0 4.784

Min Cost Flow Threshold:1-20 0.847 257.0 4.781 0.834 279.0 4.805

Table B.2: Min cost flow bounding method on MovieLens : Baseline - ItemAverage (contd.)
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Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.992 13.0 4.994 0.992 13.0 4.994

Random 0.952 80.0 4.456 0.952 80.0 4.439

Pseudo Gradient Descent 0.944 100.0 4.449 0.898 177.0 4.274

Greedy 0.944 100.0 4.449 0.944 100.0 4.449

Min Cost Flow:0-6 0.621 638.0 4.002 - - -

Min Cost Flow:0-7 0.711 486.0 4.422 - - -

Min Cost Flow:0-8 0.76 403.0 4.649 - - -

Min Cost Flow:0-9 0.798 340.0 4.731 - - -

Min Cost Flow:0-10 0.82 302.0 4.786 - - -

Min Cost Flow:0-11 0.839 271.0 4.873 - - -

Min Cost Flow:0-12 0.826 293.0 4.843 0.675 546.0 4.501

Min Cost Flow:0-13 0.81 320.0 4.83 0.761 402.0 4.738

Min Cost Flow:0-14 0.813 315.0 4.829 0.79 354.0 4.854

Min Cost Flow:0-15 0.814 313.0 4.815 0.806 327.0 4.857

Min Cost Flow:0-16 0.833 281.0 4.816 0.817 307.0 4.827

Min Cost Flow:0-17 0.823 297.0 4.811 0.823 297.0 4.802

Min Cost Flow:0-18 0.834 280.0 4.771 0.822 299.0 4.85

Min Cost Flow:0-19 0.824 296.0 4.785 0.794 347.0 4.788

Min Cost Flow:0-20 0.837 275.0 4.781 0.876 208.0 4.924

Min Cost Flow:1-6 0.781 368.0 4.292 - - -

Min Cost Flow:1-7 0.813 314.0 4.624 - - -

Min Cost Flow:1-8 0.813 315.0 4.661 - - -

Min Cost Flow:1-9 0.818 306.0 4.749 - - -

Min Cost Flow:1-10 0.878 206.0 4.885 - - -

Min Cost Flow:1-11 0.859 237.0 4.841 - - -

Min Cost Flow:1-12 0.854 246.0 4.857 0.853 247.0 4.866

Min Cost Flow:1-13 0.836 276.0 4.848 0.836 276.0 4.834

Min Cost Flow:1-14 0.817 308.0 4.84 0.834 280.0 4.804

Min Cost Flow:1-15 0.809 321.0 4.804 0.872 216.0 4.887

Table B.3: Min cost flow bounding method on MovieLens : Baseline - ItemUserAverage
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Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Min Cost Flow:1-16 0.857 240.0 4.839 0.843 264.0 4.852

Min Cost Flow:1-17 0.869 220.0 4.807 0.851 251.0 4.865

Min Cost Flow:1-18 0.826 292.0 4.799 0.834 279.0 4.764

Min Cost Flow:1-19 0.83 286.0 4.839 0.849 254.0 4.803

Min Cost Flow:1-20 0.867 223.0 4.798 0.855 244.0 4.82

Min Cost Flow Threshold:0-7 0.703 500.0 4.416 - - -

Min Cost Flow Threshold:0-8 0.751 418.0 4.578 - - -

Min Cost Flow Threshold:0-9 0.784 364.0 4.695 - - -

Min Cost Flow Threshold:0-10 0.822 300.0 4.771 - - -

Min Cost Flow Threshold:0-11 0.836 276.0 4.886 - - -

Min Cost Flow Threshold:0-12 0.832 282.0 4.851 0.672 551.0 4.491

Min Cost Flow Threshold:0-13 0.833 281.0 4.855 0.746 428.0 4.726

Min Cost Flow Threshold:0-14 0.828 290.0 4.836 0.779 372.0 4.83

Min Cost Flow Threshold:0-15 0.829 288.0 4.829 0.797 342.0 4.823

Min Cost Flow Threshold:0-16 0.827 291.0 4.835 0.82 302.0 4.813

Min Cost Flow Threshold:0-17 0.849 254.0 4.826 0.825 295.0 4.864

Min Cost Flow Threshold:0-18 0.838 272.0 4.813 0.83 286.0 4.841

Min Cost Flow Threshold:0-19 0.842 266.0 4.806 0.813 314.0 4.793

Min Cost Flow Threshold:0-20 0.82 303.0 4.815 0.823 297.0 4.784

Min Cost Flow Threshold:1-7 0.812 316.0 4.603 - - -

Min Cost Flow Threshold:1-8 0.825 294.0 4.684 - - -

Min Cost Flow Threshold:1-9 0.839 270.0 4.765 - - -

Min Cost Flow Threshold:1-10 0.881 200.0 4.869 - - -

Min Cost Flow Threshold:1-11 0.84 269.0 4.858 - - -

Min Cost Flow Threshold:1-12 0.853 247.0 4.857 0.849 254.0 4.839

Min Cost Flow Threshold:1-13 0.834 279.0 4.829 0.856 243.0 4.845

Min Cost Flow Threshold:1-14 0.841 268.0 4.805 0.85 253.0 4.845

Min Cost Flow Threshold:1-15 0.819 305.0 4.844 0.8 337.0 4.811

Min Cost Flow Threshold:1-16 0.852 249.0 4.868 0.832 283.0 4.837

Min Cost Flow Threshold:1-17 0.859 237.0 4.841 0.831 284.0 4.763

Min Cost Flow Threshold:1-18 0.856 243.0 4.819 0.841 268.0 4.839

Min Cost Flow Threshold:1-19 0.832 283.0 4.767 0.838 272.0 4.784

Min Cost Flow Threshold:1-20 0.847 257.0 4.781 0.834 279.0 4.805

Table B.4: Min cost flow bounding method on MovieLens : Baseline - ItemUserAverage (contd.)
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Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.833 281.0 5.0 0.833 281.0 5.0

Random 0.706 495.0 4.998 0.707 492.0 4.997

Pseudo Gradient Descent 0.539 966.0 4.996 0.472 1218.0 4.914

Greedy 0.539 966.0 4.996 0.539 966.0 4.996

Min Cost Flow:0-6 0.603 668.0 4.518 - - -

Min Cost Flow:0-7 0.634 616.0 4.555 - - -

Min Cost Flow:0-8 0.644 599.0 4.564 - - -

Min Cost Flow:0-9 0.657 577.0 4.556 - - -

Min Cost Flow:0-10 0.673 550.0 4.554 - - -

Min Cost Flow:0-11 0.699 507.0 4.53 - - -

Min Cost Flow:0-12 0.704 498.0 4.544 0.685 529.0 4.51

Min Cost Flow:0-13 0.709 489.0 4.567 0.707 493.0 4.537

Min Cost Flow:0-14 0.725 463.0 4.593 0.722 467.0 4.533

Min Cost Flow:0-15 0.738 441.0 4.577 0.732 451.0 4.586

Min Cost Flow:0-16 0.758 407.0 4.51 0.741 435.0 4.562

Min Cost Flow:0-17 0.72 471.0 4.508 0.747 426.0 4.571

Min Cost Flow:0-18 0.776 377.0 4.631 0.713 482.0 4.541

Min Cost Flow:0-19 0.76 403.0 4.547 0.762 400.0 4.561

Min Cost Flow:0-20 0.74 438.0 4.548 0.769 388.0 4.572

Min Cost Flow:1-6 0.65 588.0 4.525 - - -

Min Cost Flow:1-7 0.64 606.0 4.52 - - -

Min Cost Flow:1-8 0.645 597.0 4.544 - - -

Min Cost Flow:1-9 0.645 597.0 4.546 - - -

Min Cost Flow:1-10 0.7 504.0 4.512 - - -

Min Cost Flow:1-11 0.683 534.0 4.552 - - -

Min Cost Flow:1-12 0.69 522.0 4.597 0.685 530.0 4.58

Min Cost Flow:1-13 0.731 452.0 4.585 0.698 508.0 4.587

Min Cost Flow:1-14 0.737 442.0 4.557 0.711 486.0 4.548

Min Cost Flow:1-15 0.756 411.0 4.503 0.749 423.0 4.537

Table B.5: Min cost flow bounding method on MovieLens : Baseline - ItemBased
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Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Min Cost Flow:1-16 0.756 410.0 4.573 0.754 413.0 4.536

Min Cost Flow:1-17 0.71 487.0 4.559 0.748 424.0 4.551

Min Cost Flow:1-18 0.78 370.0 4.635 0.767 392.0 4.541

Min Cost Flow:1-19 0.731 452.0 4.54 0.782 366.0 4.598

Min Cost Flow:1-20 0.784 364.0 4.516 0.775 378.0 4.552

Min Cost Flow Threshold:0-7 0.647 594.0 4.571 - - -

Min Cost Flow Threshold:0-8 0.639 607.0 4.561 - - -

Min Cost Flow Threshold:0-9 0.671 553.0 4.519 - - -

Min Cost Flow Threshold:0-10 0.679 540.0 4.561 - - -

Min Cost Flow Threshold:0-11 0.675 546.0 4.603 - - -

Min Cost Flow Threshold:0-12 0.716 477.0 4.544 0.702 502.0 4.583

Min Cost Flow Threshold:0-13 0.702 502.0 4.563 0.702 502.0 4.539

Min Cost Flow Threshold:0-14 0.727 459.0 4.623 0.714 481.0 4.587

Min Cost Flow Threshold:0-15 0.734 448.0 4.563 0.729 456.0 4.55

Min Cost Flow Threshold:0-16 0.752 417.0 4.566 0.756 411.0 4.551

Min Cost Flow Threshold:0-17 0.747 425.0 4.583 0.757 408.0 4.552

Min Cost Flow Threshold:0-18 0.758 407.0 4.563 0.75 420.0 4.581

Min Cost Flow Threshold:0-19 0.769 389.0 4.522 0.769 389.0 4.565

Min Cost Flow Threshold:0-20 0.776 376.0 4.559 0.762 401.0 4.549

Min Cost Flow Threshold:1-6 0.637 611.0 4.577 - - -

Min Cost Flow Threshold:1-7 0.637 610.0 4.542 - - -

Min Cost Flow Threshold:1-8 0.65 588.0 4.541 - - -

Min Cost Flow Threshold:1-9 0.685 529.0 4.544 - - -

Min Cost Flow Threshold:1-10 0.664 565.0 4.535 - - -

Min Cost Flow Threshold:1-11 0.702 502.0 4.527 - - -

Min Cost Flow Threshold:1-12 0.732 451.0 4.549 0.702 501.0 4.59

Min Cost Flow Threshold:1-13 0.724 465.0 4.516 0.725 462.0 4.584

Min Cost Flow Threshold:1-14 0.741 435.0 4.565 0.746 428.0 4.576

Min Cost Flow Threshold:1-15 0.748 424.0 4.576 0.735 446.0 4.542

Min Cost Flow Threshold:1-16 0.709 490.0 4.55 0.746 427.0 4.547

Min Cost Flow Threshold:1-17 0.749 423.0 4.576 0.748 424.0 4.556

Min Cost Flow Threshold:1-18 0.772 383.0 4.601 0.745 429.0 4.568

Min Cost Flow Threshold:1-19 0.772 383.0 4.575 0.746 428.0 4.551

Min Cost Flow Threshold:1-20 0.797 341.0 4.564 0.742 434.0 4.578

Table B.6: Min cost flow bounding method on MovieLens : Baseline - ItemBased (contd.)
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Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.883 196.0 3.875 0.883 196.0 3.875

Random 0.874 212.0 3.61 0.869 221.0 3.619

Pseudo Gradient Descent 0.794 346.0 3.621 0.758 407.0 3.585

Greedy 0.794 346.0 3.624 0.794 346.0 3.624

Min Cost Flow:0-6 0.61 656.0 3.463 - - -

Min Cost Flow:0-7 0.743 432.0 4.399 - - -

Min Cost Flow:0-8 0.795 345.0 4.733 - - -

Min Cost Flow:0-9 0.817 307.0 4.837 - - -

Min Cost Flow:0-10 0.847 258.0 4.888 - - -

Min Cost Flow:0-11 0.853 247.0 4.902 - - -

Min Cost Flow:0-12 0.846 259.0 4.907 0.669 556.0 4.648

Min Cost Flow:0-13 0.851 251.0 4.928 0.774 380.0 4.874

Min Cost Flow:0-14 0.879 203.0 4.919 0.794 347.0 4.899

Min Cost Flow:0-15 0.862 232.0 4.902 0.804 330.0 4.905

Min Cost Flow:0-16 0.856 243.0 4.905 0.856 242.0 4.903

Min Cost Flow:0-17 0.844 262.0 4.904 0.866 225.0 4.904

Min Cost Flow:0-18 0.874 212.0 4.914 0.829 288.0 4.916

Min Cost Flow:0-19 0.867 224.0 4.919 0.851 251.0 4.903

Min Cost Flow:0-20 0.844 262.0 4.91 0.807 325.0 4.905

Min Cost Flow:1-6 0.844 262.0 4.227 - - -

Min Cost Flow:1-7 0.867 224.0 4.698 - - -

Min Cost Flow:1-8 0.866 225.0 4.798 - - -

Min Cost Flow:1-9 0.876 209.0 4.892 - - -

Min Cost Flow:1-10 0.89 185.0 4.91 - - -

Min Cost Flow:1-11 0.894 178.0 4.917 - - -

Min Cost Flow:1-12 0.897 174.0 4.931 0.861 234.0 4.923

Min Cost Flow:1-13 0.861 233.0 4.904 0.832 283.0 4.895

Min Cost Flow:1-14 0.851 250.0 4.906 0.857 240.0 4.883

Min Cost Flow:1-15 0.914 145.0 4.921 0.863 231.0 4.904

Table B.7: Min cost flow bounding method on MovieLens : Baseline - UserBased

78



Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Min Cost Flow:1-16 0.861 234.0 4.901 0.866 225.0 4.925

Min Cost Flow:1-17 0.81 320.0 4.923 0.85 252.0 4.914

Min Cost Flow:1-18 0.863 231.0 4.916 0.866 225.0 4.902

Min Cost Flow:1-19 0.86 235.0 4.899 0.857 241.0 4.906

Min Cost Flow:1-20 0.861 233.0 4.904 0.841 267.0 4.896

Min Cost Flow Threshold:0-7 0.747 426.0 4.39 - - -

Min Cost Flow Threshold:0-8 0.797 341.0 4.738 - - -

Min Cost Flow Threshold:0-9 0.826 293.0 4.821 - - -

Min Cost Flow Threshold:0-10 0.844 262.0 4.908 - - -

Min Cost Flow Threshold:0-11 0.85 253.0 4.912 - - -

Min Cost Flow Threshold:0-12 0.844 263.0 4.896 0.671 554.0 4.645

Min Cost Flow Threshold:0-13 0.839 271.0 4.908 0.773 382.0 4.874

Min Cost Flow Threshold:0-14 0.842 265.0 4.896 0.801 334.0 4.912

Min Cost Flow Threshold:0-15 0.867 223.0 4.905 0.801 334.0 4.908

Min Cost Flow Threshold:0-16 0.861 234.0 4.895 0.817 307.0 4.912

Min Cost Flow Threshold:0-17 0.866 226.0 4.909 0.872 215.0 4.927

Min Cost Flow Threshold:0-18 0.837 275.0 4.894 0.822 300.0 4.892

Min Cost Flow Threshold:0-19 0.857 241.0 4.912 0.809 321.0 4.921

Min Cost Flow Threshold:0-20 0.858 239.0 4.909 0.849 254.0 4.922

Min Cost Flow Threshold:1-7 0.86 235.0 4.709 - - -

Min Cost Flow Threshold:1-8 0.863 231.0 4.818 - - -

Min Cost Flow Threshold:1-9 0.87 218.0 4.891 - - -

Min Cost Flow Threshold:1-10 0.897 174.0 4.926 - - -

Min Cost Flow Threshold:1-11 0.876 208.0 4.928 - - -

Min Cost Flow Threshold:1-12 0.876 208.0 4.921 0.89 185.0 4.906

Min Cost Flow Threshold:1-13 0.868 222.0 4.902 0.865 227.0 4.91

Min Cost Flow Threshold:1-14 0.867 224.0 4.895 0.864 228.0 4.904

Min Cost Flow Threshold:1-15 0.854 246.0 4.927 0.85 252.0 4.906

Min Cost Flow Threshold:1-16 0.873 213.0 4.908 0.857 240.0 4.925

Min Cost Flow Threshold:1-17 0.847 257.0 4.912 0.846 259.0 4.917

Min Cost Flow Threshold:1-18 0.86 235.0 4.904 0.84 269.0 4.929

Min Cost Flow Threshold:1-19 0.874 212.0 4.913 0.834 280.0 4.913

Min Cost Flow Threshold:1-20 0.875 211.0 4.891 0.836 276.0 4.907

Table B.8: Min cost flow bounding method on MovieLens : Baseline - UserBased (contd.)
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Recommender ID@10 IC@10 APR@10 ID@20 IC@20 APR@20

Base 0.894 179.0 4.678 0.894 179.0 4.661

Random 0.848 256.0 4.396 0.839 270.0 4.386

Pseudo Gradient Descent 0.778 460.0 4.412 0.731 647.0 4.263

Greedy 0.779 465.0 4.4 0.783 463.0 4.389

Min Cost Flow:0-6 0.605 665.0 3.711 - - -

Min Cost Flow:0-7 0.699 507.0 3.901 - - -

Min Cost Flow:0-8 0.743 433.0 4.02 - - -

Min Cost Flow:0-9 0.776 377.0 4.104 - - -

Min Cost Flow:0-10 0.782 367.0 4.123 - - -

Min Cost Flow:0-11 0.768 390.0 4.126 - - -

Min Cost Flow:0-12 0.783 365.0 4.141 0.677 543.0 4.076

Min Cost Flow:0-13 0.772 384.0 4.18 0.737 443.0 4.127

Min Cost Flow:0-14 0.779 372.0 4.197 0.773 382.0 4.112

Min Cost Flow:0-15 0.809 321.0 4.202 0.751 418.0 4.135

Min Cost Flow:0-16 0.81 319.0 4.189 0.784 363.0 4.137

Min Cost Flow:0-17 0.816 309.0 4.199 0.781 369.0 4.134

Min Cost Flow:0-18 0.833 281.0 4.189 0.804 329.0 4.152

Min Cost Flow:0-19 0.826 293.0 4.233 0.804 329.0 4.19

Min Cost Flow:0-20 0.851 251.0 4.2 0.791 352.0 4.167

Min Cost Flow:1-6 0.784 363.0 3.79 - - -

Min Cost Flow:1-7 0.797 341.0 3.937 - - -

Min Cost Flow:1-8 0.854 245.0 4.108 - - -

Min Cost Flow:1-9 0.829 288.0 4.121 - - -

Min Cost Flow:1-10 0.85 253.0 4.193 - - -

Min Cost Flow:1-11 0.801 335.0 4.166 - - -

Min Cost Flow:1-12 0.802 333.0 4.162 0.818 306.0 4.162

Min Cost Flow:1-13 0.82 303.0 4.206 0.787 358.0 4.142

Min Cost Flow:1-14 0.797 341.0 4.191 0.8 337.0 4.153

Min Cost Flow:1-15 0.808 323.0 4.173 0.81 320.0 4.154

Min Cost Flow:1-16 0.826 292.0 4.22 0.8 337.0 4.146

Min Cost Flow:1-17 0.837 274.0 4.199 0.809 321.0 4.164

Min Cost Flow:1-18 0.833 281.0 4.236 0.791 352.0 4.173

Min Cost Flow:1-19 0.828 289.0 4.216 0.825 294.0 4.234

Min Cost Flow:1-20 0.804 329.0 4.197 0.816 309.0 4.188

Table B.9: Min cost flow bounding method on MovieLens : Baseline - ALSWR
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APPENDIX C

Tables - Gradient Descent Method

The following are the results on selected parameter settings of the gradient descent method outlined in

Section 7.2.

K Beta Sigma Alpha Eta ID IC APR

50 3.0 0.5 0.7 0.1 0.2447 1581.0 3.7797

50 3.0 0.5 0.6 0.9 0.2563 1581.0 3.7793

50 3.0 0.1 0.1 0.2 0.3342 1266.0 3.6547

50 3.0 0.1 0.1 0.1 0.3688 1279.0 3.6541

50 3.0 0.5 0.7 0.2 0.3905 1589.0 3.7806

50 3.0 0.1 0.1 0.3 0.4341 1257.0 3.6532

50 3.0 0.5 0.7 0.3 0.4286 1593.0 3.7768

50 3.0 0.1 0.1 0.4 0.4309 1270.0 3.6543

50 3.0 0.1 0.1 0.5 0.4378 1275.0 3.654

50 3.0 0.5 0.7 0.4 0.4519 1582.0 3.778

50 3.5 0.9 0.5 0.6 0.4673 1633.0 4.3085

50 3.5 0.9 0.5 0.5 0.4724 1630.0 4.3062

50 3.5 0.4 0.9 0.1 0.4683 1394.0 4.0205

50 3.5 0.4 0.9 0.2 0.4771 1393.0 4.021

50 3.5 0.9 0.5 0.7 0.4736 1634.0 4.3087

50 3.5 0.4 0.9 0.3 0.4783 1380.0 4.022

50 3.5 0.9 0.5 0.8 0.4796 1629.0 4.3065

50 3.5 0.4 0.9 0.4 0.4824 1388.0 4.0225

50 3.5 0.9 0.5 0.9 0.4799 1633.0 4.3122

50 3.5 0.4 0.8 0.9 0.4811 1389.0 4.0222

50 4.0 0.8 0.7 0.9 0.4881 1548.0 4.5974

50 4.0 0.8 0.8 0.1 0.4872 1544.0 4.6018

50 4.0 0.8 0.7 0.8 0.4888 1527.0 4.5948

50 4.0 0.8 0.8 0.2 0.4884 1547.0 4.6003

50 4.0 0.4 0.9 0.3 0.4927 1085.0 4.3728

50 4.0 0.4 0.9 0.2 0.4929 1080.0 4.3682

50 4.0 0.8 0.8 0.3 0.4899 1532.0 4.5989

Table C.1: Gradient Descent Method on MovieLens Dataset



K Beta Sigma Alpha Eta ID IC APR

50 4.0 0.4 0.9 0.1 0.4916 1103.0 4.3707
50 4.0 0.8 0.8 0.4 0.4919 1525.0 4.6021
50 4.0 0.4 0.9 0.4 0.4934 1068.0 4.3711
100 3.0 0.1 0.2 0.5 0.2738 1341.0 3.7276
100 3.0 0.1 0.3 0.1 0.2288 1342.0 3.7286
100 3.0 0.1 0.1 0.3 0.3254 1342.0 3.7255
100 3.0 0.1 0.1 0.7 0.3826 1342.0 3.7272
100 3.0 0.1 0.1 0.6 0.4131 1332.0 3.7263
100 3.0 0.1 0.1 0.8 0.4231 1337.0 3.7287
100 3.0 0.1 0.2 0.9 0.4276 1339.0 3.7267
100 3.0 0.1 0.2 0.2 0.4323 1334.0 3.7274
100 3.0 0.1 0.1 0.5 0.449 1333.0 3.7264
100 3.0 0.1 0.2 0.7 0.4425 1340.0 3.7253
100 3.5 0.1 0.1 0.2 0.5016 994.0 3.9843
100 3.5 0.1 0.2 0.4 0.2959 998.0 3.9882
100 3.5 0.1 0.3 0.3 0.3193 1002.0 3.9888
100 3.5 0.1 0.2 0.3 0.3667 996.0 3.9876
100 3.5 0.1 0.1 0.4 0.3947 1005.0 3.9882
100 3.5 0.1 0.1 0.3 0.4365 990.0 3.9887
100 3.5 0.1 0.1 0.6 0.4346 986.0 3.9869
100 3.5 0.1 0.1 0.8 0.4322 1004.0 3.9878
100 3.5 0.1 0.1 0.5 0.4452 978.0 3.9869
100 3.5 0.1 0.1 0.9 0.4492 1002.0 3.9867
100 4.0 0.1 0.2 0.1 0.7308 557.0 4.2866
100 4.0 0.1 0.1 0.2 0.4818 542.0 4.287
100 4.0 0.1 0.1 0.3 0.4372 551.0 4.286
100 4.0 0.1 0.1 0.5 0.4158 557.0 4.2867
100 4.0 0.1 0.1 0.1 0.3991 554.0 4.2863
100 4.0 0.1 0.4 0.3 0.423 548.0 4.2853
100 4.0 0.1 0.2 0.7 0.4361 549.0 4.2866
100 4.0 0.1 0.2 0.6 0.4435 548.0 4.2844
100 4.0 0.1 0.1 0.8 0.4542 540.0 4.2843
100 4.0 0.1 0.1 0.9 0.4418 552.0 4.2858

Table C.2: Gradient Descent Method on MovieLens Dataset (contd.)
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K Beta Sigma Alpha Eta ID IC APR

150 3.0 0.1 0.1 0.7 0.2334 1412.0 3.8016
150 3.0 0.1 0.1 0.1 0.2624 1407.0 3.8009
150 3.0 0.1 0.1 0.4 0.3553 1411.0 3.8042
150 3.0 0.1 0.2 0.4 0.387 1408.0 3.8037
150 3.0 0.1 0.1 0.5 0.4207 1408.0 3.8019
150 3.0 0.1 0.3 0.2 0.4172 1410.0 3.8036
150 3.0 0.1 0.2 0.1 0.4278 1407.0 3.8004
150 3.0 0.1 0.2 0.6 0.4391 1398.0 3.8038
150 3.0 0.1 0.1 0.6 0.4419 1407.0 3.8011
150 3.0 0.1 0.4 0.4 0.4523 1407.0 3.8064
150 3.5 0.1 0.2 0.2 0.4388 1104.0 4.0419
150 3.5 0.1 0.1 0.4 0.2741 1104.0 4.042
150 3.5 0.1 0.3 0.1 0.3217 1107.0 4.043
150 3.5 0.1 0.2 0.1 0.3647 1113.0 4.0415
150 3.5 0.1 0.1 0.1 0.4051 1108.0 4.0416
150 3.5 0.1 0.2 0.7 0.4172 1107.0 4.0391
150 3.5 0.1 0.1 0.3 0.4254 1112.0 4.0392
150 3.5 0.1 0.2 0.3 0.4282 1116.0 4.0438
150 3.5 0.1 0.1 0.5 0.4536 1103.0 4.0418
150 3.5 0.1 0.3 0.2 0.4462 1114.0 4.0418
150 4.0 0.1 0.1 0.9 0.678 654.0 4.3294
150 4.0 0.1 0.2 0.3 0.455 666.0 4.3316
150 4.0 0.1 0.1 0.5 0.3864 671.0 4.33
150 4.0 0.1 0.1 0.6 0.3792 669.0 4.3332
150 4.0 0.1 0.1 0.3 0.4208 653.0 4.3313
150 4.0 0.1 0.4 0.3 0.41 664.0 4.3322
150 4.0 0.1 0.2 0.1 0.4284 659.0 4.3331
150 4.0 0.1 0.1 0.2 0.4314 660.0 4.3311
150 4.0 0.1 0.1 0.7 0.4432 662.0 4.3307
150 4.0 0.1 0.3 0.5 0.4487 664.0 4.3301

Table C.3: Gradient Descent Method on MovieLens Dataset (contd.)
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K Beta Sigma Alpha Eta ID IC APR

50 3.5 0.9 0.5 0.1 0.1914 1100.0 4.2243

50 3.5 0.9 0.9 0.1 0.2826 1101.0 4.2175

50 3.5 0.9 0.3 0.1 0.3471 1101.0 4.2251

50 3.5 0.9 0.1 0.1 0.3792 1101.0 4.2252

50 3.5 0.9 0.7 0.1 0.401 1101.0 4.2269

50 3.5 0.8 0.3 0.1 0.4189 1100.0 4.1554

50 3.5 0.8 0.7 0.1 0.4275 1101.0 4.1547

50 3.5 0.8 0.5 0.1 0.4515 1099.0 4.1583

50 3.5 0.8 0.1 0.1 0.4434 1101.0 4.155

50 3.5 0.8 0.9 0.1 0.4477 1100.0 4.1598

50 3.0 0.9 0.5 0.1 0.1281 1101.0 3.9067

50 3.0 0.9 0.1 0.1 0.2244 1101.0 3.9043

50 3.0 0.9 0.7 0.1 0.3552 1101.0 3.9042

50 3.0 0.9 0.9 0.1 0.3676 1101.0 3.9101

50 3.0 0.9 0.3 0.1 0.3863 1101.0 3.91

50 3.0 0.8 0.3 0.1 0.4163 1101.0 3.8391

50 3.0 0.8 0.7 0.1 0.4317 1101.0 3.8385

50 3.0 0.8 0.9 0.1 0.4483 1101.0 3.839

50 3.0 0.8 0.5 0.1 0.4423 1101.0 3.8407

50 3.0 0.8 0.1 0.1 0.4549 1101.0 3.8379

50 4.0 0.9 0.5 0.1 0.2638 1098.0 4.5875

50 4.0 0.9 0.3 0.2 0.2698 1089.0 4.5868

50 4.0 0.9 0.1 0.1 0.3426 1092.0 4.5845

50 4.0 0.9 0.9 0.1 0.3558 1098.0 4.5885

50 4.0 0.9 0.3 0.1 0.3826 1096.0 4.5872

50 4.0 0.9 0.5 0.2 0.4135 1097.0 4.5864

50 4.0 0.9 0.7 0.1 0.4398 1092.0 4.5905

50 4.0 0.9 0.1 0.2 0.4379 1095.0 4.5881

50 4.0 0.9 0.9 0.2 0.4478 1094.0 4.5835

50 4.0 0.9 0.7 0.2 0.45 1095.0 4.5873

Table C.4: Gradient Descent Method on Netflix Dataset
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K Beta Sigma Alpha Eta ID IC APR

100 3.0 0.9 0.3 0.1 0.1151 1101.0 3.9614

100 3.0 0.9 0.9 0.1 0.2273 1101.0 3.9633

100 3.0 0.9 0.1 0.1 0.3342 1101.0 3.9586

100 3.0 0.9 0.7 0.1 0.365 1101.0 3.9613

100 3.0 0.9 0.5 0.1 0.4027 1101.0 3.9601

100 3.0 0.8 0.5 0.1 0.4206 1101.0 3.8975

100 3.0 0.8 0.1 0.1 0.4272 1101.0 3.8954

100 3.0 0.8 0.7 0.1 0.4354 1101.0 3.8976

100 3.0 0.8 0.3 0.1 0.4396 1101.0 3.8927

100 3.0 0.8 0.9 0.1 0.4543 1101.0 3.8945

100 3.5 0.9 0.7 0.1 0.1723 1101.0 4.2692

100 3.5 0.9 0.3 0.1 0.2396 1101.0 4.2696

100 3.5 0.9 0.9 0.1 0.3375 1101.0 4.271

100 3.5 0.9 0.1 0.1 0.3782 1101.0 4.2625

100 3.5 0.9 0.5 0.1 0.3898 1101.0 4.2648

100 3.5 0.8 0.3 0.1 0.425 1101.0 4.1956

100 3.5 0.8 0.7 0.1 0.4269 1101.0 4.1944

100 3.5 0.8 0.9 0.1 0.4402 1101.0 4.1975

100 3.5 0.8 0.1 0.1 0.4551 1099.0 4.194

100 3.5 0.8 0.5 0.1 0.4429 1101.0 4.1962

100 4.0 0.9 0.9 0.1 0.2413 1097.0 4.6156

100 4.0 0.9 0.7 0.1 0.2828 1100.0 4.6136

100 4.0 0.9 0.1 0.1 0.3582 1095.0 4.6195

100 4.0 0.9 0.5 0.1 0.3962 1097.0 4.6202

100 4.0 0.9 0.3 0.1 0.4007 1098.0 4.621

100 4.0 0.9 0.1 0.2 0.4163 1097.0 4.6185

100 4.0 0.9 0.7 0.2 0.4225 1098.0 4.6166

100 4.0 0.9 0.5 0.2 0.4331 1099.0 4.6212

100 4.0 0.8 0.5 0.2 0.4615 1085.0 4.5513

100 4.0 0.8 0.9 0.2 0.4512 1093.0 4.5529

Table C.5: Gradient Descent Method on Netflix Dataset (contd.)
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K Beta Sigma Alpha Eta ID IC APR

150 3.0 0.9 0.5 0.1 0.1023 1101.0 4.0188

150 3.0 0.9 0.9 0.1 0.2256 1101.0 4.019

150 3.0 0.9 0.1 0.1 0.3413 1101.0 4.0196

150 3.0 0.9 0.3 0.1 0.3708 1101.0 4.0206

150 3.0 0.9 0.7 0.1 0.4011 1101.0 4.024

150 3.0 0.8 0.5 0.1 0.4026 1101.0 3.9551

150 3.0 0.8 0.3 0.1 0.4214 1101.0 3.9545

150 3.0 0.8 0.7 0.1 0.4342 1101.0 3.9582

150 3.0 0.8 0.1 0.1 0.4497 1101.0 3.9585

150 3.0 0.8 0.9 0.1 0.4507 1101.0 3.9565

150 3.5 0.9 0.9 0.1 0.1573 1101.0 4.3101

150 3.5 0.9 0.3 0.1 0.2599 1101.0 4.3087

150 3.5 0.9 0.5 0.1 0.3302 1101.0 4.3089

150 3.5 0.9 0.1 0.1 0.3777 1101.0 4.3069

150 3.5 0.9 0.7 0.1 0.3812 1101.0 4.3089

150 3.5 0.8 0.9 0.1 0.421 1101.0 4.2385

150 3.5 0.8 0.5 0.1 0.4299 1101.0 4.2354

150 3.5 0.8 0.7 0.1 0.4307 1100.0 4.2439

150 3.5 0.8 0.3 0.1 0.4545 1100.0 4.2392

150 3.5 0.8 0.1 0.1 0.4535 1101.0 4.2395

150 4.0 0.9 0.3 0.1 0.2239 1100.0 4.6531

150 4.0 0.9 0.7 0.1 0.2631 1100.0 4.6493

150 4.0 0.9 0.5 0.1 0.3265 1101.0 4.6509

150 4.0 0.9 0.1 0.1 0.3889 1100.0 4.654

150 4.0 0.8 0.7 0.2 0.4001 1097.0 4.5819

150 4.0 0.9 0.1 0.2 0.4145 1099.0 4.6501

150 4.0 0.8 0.1 0.2 0.4291 1101.0 4.5806

150 4.0 0.8 0.3 0.1 0.4375 1096.0 4.5836

150 4.0 0.8 0.9 0.1 0.4413 1098.0 4.5849

150 4.0 0.8 0.5 0.1 0.456 1098.0 4.5854

Table C.6: Gradient Descent Method on Netflix Dataset (contd.)
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APPENDIX D

Graphs - Basic Min Cost Flow Method

The following plots show the variation of the performance of the min cost flow algorithm described in

section 6.2 with different parameters.

Figure D.1: Intersection Distance: Dataset=MovieLens, Baseline=UserBased, N=10



Figure D.2: Average Predicted Rating: Dataset=MovieLens, Baseline=UserBased, N=10

Figure D.3: Intersection Distance: Dataset=MovieLens, Baseline=UserBased, N=20
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Figure D.4: Average Predicted Rating: Dataset=MovieLens, Baseline=UserBased, N=20

Figure D.5: Intersection Distance: Dataset=MovieLens, Baseline=ItemBased, N=10
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Figure D.6: Average Predicted Rating: Dataset=MovieLens, Baseline=ItemBased, N=10

Figure D.7: Intersection Distance: Dataset=MovieLens, Baseline=ItemBased, N=20
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Figure D.8: Average Predicted Rating: Dataset=MovieLens, Baseline=ItemBased, N=20

Figure D.9: Intersection Distance: Dataset=MovieLens, Baseline=ItemAverage, N=10
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Figure D.10: Average Predicted Rating: Dataset=MovieLens, Baseline=ItemAverage, N=10

Figure D.11: Intersection Distance: Dataset=MovieLens, Baseline=ItemAverage, N=20
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Figure D.12: Average Predicted Rating: Dataset=MovieLens, Baseline=ItemAverage, N=20

Figure D.13: Intersection Distance: Dataset=MovieLens, Baseline=ItemUserAverage, N=10
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Figure D.14: Average Predicted Rating: Dataset=MovieLens, Baseline=ItemUserAverage, N=10

Figure D.15: Intersection Distance: Dataset=MovieLens, Baseline=ItemUserAverage, N=20
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Figure D.16: Average Predicted Rating: Dataset=MovieLens, Baseline=ItemUserAverage, N=20

Figure D.17: Intersection Distance: Dataset=MovieLens, Baseline=ALSWR, N=10

95



Figure D.18: Average Predicted Rating: Dataset=MovieLens, Baseline=ALSWR, N=10

Figure D.19: Intersection Distance: Dataset=MovieLens, Baseline=ALSWR, N=20

Figure D.20: Average Predicted Rating: Dataset=MovieLens, Baseline=ALSWR, N=20
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APPENDIX E

Graphs - Dual Objective Min Cost Flow Method

The following plots show the variation of the performance of the dual objective optimizing min cost flow

algorithm described in section 6.3 with the parameter λ2 for different datasets, base recommenders and

number of items per recommendation list, N .

Figure E.1: Dataset=MovieLens, Baseline=UserBased



Figure E.2: Dataset=MovieLens, Baseline=ItemBased

Figure E.3: Dataset=MovieLens, Baseline=ItemAverage
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Figure E.4: Dataset=MovieLens, Baseline=ItemUserAverage

Figure E.5: Dataset=MovieLens, Baseline=ALSWR
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Figure E.6: Dataset=Netflix, Baseline=UserBased

Figure E.7: Dataset=Netflix, Baseline=ItemBased
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Figure E.8: Dataset=Netflix, Baseline=ItemAverage

Figure E.9: Dataset=Netflix, Baseline=ItemUserAverage
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Figure E.10: Dataset=Netflix, Baseline=ALSWR
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