
Near Wait-free Binary Search Tree

CS6868 : Concurrent Programming
Course Project

By

Aishwarya P (CS11B004)
Aravind S (CS11B033)

R Srinivasan (CS11B059)
Adit K (CS11B063)

1

Introduction
In this project, we have attempted to create a reasonably simple implementa-
tion of a wait-free Binary Search Tree (BST). Although this is not true in its
entirety, we feel it should provide a good level of performance. And, the idea
seemed very cool!

The first question to ask would be: Why parallelize such a simple ADT?

• It’s easier for us to conceive!

• Complex ADTs are serially quick too. So, there is not much point in
trying to parallelize them and speed them up. This particular ADT can
get unwieldy after several insertions. So, maybe parallelism helps here.

We make an assumption before we begin. Assume that the number of threads
coming in with operations to be done on the BSTis bounded by some constant,
say NT . We will refer to such threads as user threads and denote them by
Top. Since the number of threads accessing the tree at a time is assumed to be
bounded, we can refer to them as T 1

op, . . . , T NT
op .

The operations we expect to support are search, insert and delete. We also
assume that duplicates are not allowed in the tree.

Structure of a Node
We would like to describe the fields used in a node of our BST, so for easier
understanding of code snippets. They are shown, with their intended uses, in
the code snippet below -

public class Node {
private volatile int value; // Value at the node
public volatile int height; // Used to balance the tree during clean-up

// The value this holds is not valid except during
// the clean-up operation

private volatile AtomicBoolean isMarked; // True if the node is marked for delete
private volatile AtomicBoolean isSentinel; // True if the node is a sentinel

// Only the root node can be a sentinel
private volatile Node left, right;

// Left and right children of the node respectively
private volatile ElementInserterThread elementInserter;

// Thread that handles inserts to this node
// The value is valid only if the node has
// less than 2 children

Also, some statistics about the BST are maintained in a class called TreeSize.
Their use will become clear as we proceed.

/**
* Class that contains statistics about teh number of different types of
* nodes in the BST. This is separate from the BST class because many
* classes need access to these
* @author Aishwarya P, Srinivasan R, Adit Krishnan, Arvind Sankar
*/

public class TreeSize {
public static AtomicInteger numNodes = new AtomicInteger(1);

2

public static AtomicInteger liveNodes = new AtomicInteger(0);
public static AtomicInteger deadNodes = new AtomicInteger(1);

}

The Delete Operation
Deletion in a BST is quite a costly operation, potentially resulting in significant
refactoring of the tree. If any insert operation was being performed concurrently,
its region of operation could potentially shift significantly, making it difficult to
design a wait-free insertion. So, we thought it made sense to try a lazy paradigm.
The delete operation in our BST simply locates the node to be deleted using
a standard BST traversal and marks it. The following is the code snippet for
delete -

/**
* Deletes the @param key from the BST
* @return true if the delete was successful (@param key was found)
* and false otherwise
*/

public boolean delete(int key) {
Node tempNode = root;
// Indicate that a thread is using the BST and wait till the
// BST is not being cleaned up
int sum = 2;
while(true) {

while(numLiveThreads.get() % 2 != 0);
if(numLiveThreads.addAndGet(2) % 2 == 0) {

break;
}
sum += 2;

}

// Perform a standard BST search and mark the node
// as deleted if found
while(true) {

if(tempNode == null) { // Key not found
numLiveThreads.addAndGet(-sum);

// Indicate that this thread is done
return false;

}
if(tempNode.getValue() < key) {

tempNode = tempNode.getRight();
continue;

}
if(tempNode.getValue() > key) {

tempNode = tempNode.getLeft();
continue;

}
if(!tempNode.isSentinel().get()) {

// Key found in a sentinel node
if(tempNode.CASMarked(false, true)) {

// Marked the node for deletion
TreeSize.deadNodes.getAndIncrement();
TreeSize.liveNodes.getAndDecrement();
numLiveThreads.addAndGet(-sum);

// Indicate that this thread is done
return true;

} else {
// Marking failed due to contention
// Key was deleted by some other thread
numLiveThreads.addAndGet(-sum);

// Indicate that this thread is done
return false;

}

3

}

numLiveThreads.addAndGet(-sum); // Indicate that this thread is done
return false; // Key not found

}
}

Barring the modifications to the variable numLiveThreads, it can be seen that
this is trivially wait-free. We defer the explanation of the use of the variable
numLiveThreads and why the loop on that variable at the start of the function
terminates ina finite number of steps. Under this condition, the delete operation
is clearly wait-free.

The delete operation is also linearizable, with the linearization point as the
successful / failed compareAndSet operation on the mark of the node (performed
by the function CASMarked).

The Search Operation
The search operation in our BST is also the standard BST search algorithm.
Here is the code snippet for search -

/**
* Search for the @param key
* @return true if found, false otherwise
*/

public boolean search(int key) {
Node tempNode = root;
// Indicate that a thread is using the BST and wait till the
// BST is not being cleaned up
int sum = 2;
while(true) {

while(numLiveThreads.get() % 2 != 0);
if(numLiveThreads.addAndGet(2) % 2 == 0) {

break;
}
sum += 2;

}

// Standard BST search
while(true) {

if(tempNode == null) {
numLiveThreads.addAndGet(-sum);
return false;

}
if(tempNode.getValue() < key) {

tempNode = tempNode.getRight();
continue;

}
if(tempNode.getValue() > key) {

tempNode = tempNode.getLeft();
continue;

}

numLiveThreads.addAndGet(-sum); // Indicate that this thread is done
return (!tempNode.isSentinel().get() && !tempNode.isMarked().get());

}
}

4

Search performs a standard traversal of the BST. If it does not find the node, it
returns false. If a node is found with that value, search returns true if the node
is neither marked nor a sentinel, else it returns false.

Again, deferring explanations related to numLiveThreads and assuming the loop
associated with it terminates in a finite number of steps, this operation is clearly
wait-free.

The Insert Operation
Our initial idea for insertion was very simple. To make insertion wait-free, we
had to tackle the situation of concurrent inserts at the same position in the tree,
as this would be the only case where the compareAdnSet operation required to
link a node to its parent, could possibly fail repeatedly due to overtaking by
other threads. Ironically, to handle this issue, we decided to borrow wait-free
queues from “Wait-Free Queues With Multiple Enqueuers and Dequeuers", by
Alex Kogan and Erez Petrank.

The idea was this - when a thread wants to insert at a position in the tree, it
enters into a queue and waits for its turn. Clearly, it will not have to wait for
more time than that taken by all other threads and if we ensure that they finish
in a finite amount of time, so will the enqueued one. The use of a queue au-
tomatically ensures that no thread will overtake another at the same location.
Hence it would only be necessary to show that the number of steps required
after a thread’s request is dequeued is finite, and that the request does indeed
get dequeued.

The insert operation could then be described in an abstract manner as follows
- there is a wait-free queue associated with each leaf node, when we begin, only
the root. For each queue, we have a dequeue operation which is forever running.
Whenever the dequeuer has an item to dequeue, the item at the head of the
queue is removed and actually inserted as a child to the node with which the
queue is associated. Then, the queue is split into two, one for the left node and
one for the right each containing items less than and greater than the current
item inserted, respectively. The two queues now start running their dequeue
threads and the process goes on. Since the queue is wait-free, the insert proce-
dure is also wait-free. From here on, we shall refer to these dequeuer threads as
ElementInserters as their job is to actually insert a value into the tree.

The ROOT cause of all our misery
The above naive attempt at a solution turned out to be futile once the imple-
mentation began.

Let us revisit the initial solution and see where exactly the approach fails. The
idea was to maintain a queue of elements to be inserted at each node where
there is vacancy, i.e., nodes of out-degree 0 or 1, if we consider the BST as a
rooted directed tree with leaves emerging as outward edges from their parents.

5

Our goal and gaurentee - wait freedom! Hence, we ensured a FIFO order of the
incoming threads. The workers at each of these potential insert spots would
inspect the queues continuously. The moment some element is found in the
queue, they dequeue the head and carry out its insert operation. Once done,
the queue would now have to be either split between the single node inserted
and its parent or between the already existing child and the newly created one
(in this case, the parent has in some sense been exhausted - its job is done, it
can no longer facilitate inserts).

The problem: the splitting of the queue in fact changes the queues present in
the structure. For instance, suppose A were the queue at the parent and we
created two new queues B and C split from A when a new node x was being
created. Let y have been the parent of x at the time and suppose y had no
other child then. So A was y’s queue. We would assign one of B and C to x
and the other to y depending on the relative values of x and y. Whoever comes
in after this would realize that A is no longer a valid queue to attack, in fact,
that reference would not be present at y. However, it is very much possible that
someone decided to insert as a child to y another z when this insert of x was
occurring. If z were put into the right queue, say one of B and C, we are still
fine. However, suppose z came into A after B and C were formed. This is very
much possible since we form the queues first and then swap them. We do not
know when no one else will try to work on A and we cannot wait since we want
to be wait-free. So why not attach the queues first and then populate them?
Well, we would lose out on FIFO order as newly added nodes like z may enter
the new queue before I bring y from A to it, say. If such an overtake is possible,
we are again not wait-free.

The "solution" to the problem which we came up with was the following. It is
okay if z gets into the queue late. Once we form the queues B and C, we will
re-read A once more and take the newly found elements and put them into B
and C accordingly. This again maintains FIFO order to make sure we keep our
promise. And as I write this out, I am unable to control my laughter as our
solution is only exceeded by our stupidity. It is very clear that this does not
work and any competent reader would see that, even over a cup of tea! Say I do
read A again and still find it empty. Does it mean that z will not enter A just
after I assume it is empty and before I swap queues? Obviously not. So how do
we know when no-one will touch A again? We cannot wait and hence cannot
know. This immediately brings to mind one thought. If lock-free was our goal,
this is trivial. Wait-freedom is truly much harder.

A try at a solution would be to set flags on nodes that someone is actually going
to try to insert into their respective queues. This would however result in our
worker threads waiting for a green signal from incoming user threads, which
obviously defeats the purpose of our endeavour. The interesting aspect is that
several ideas that spring out of our minds needs something of the following form
to work: in this case, we need to check the emptiness of A and swap y’s queue
with one of B or C atomically to prevent further references to A. There is no
easy way to do this!

6

The Solution
After realizing that splitting queues is not really an option, we found an alter-
nate strategy that would in-fact work. Since this has been implemented, we will
use snippets from our code to explain the solution.

We still wish to use FIFO ordering of requests to ensure wait-freedom. Thus,
we still have a wait-free queue. However, now there is only one such queue,
which we shall call the main queue. Also, there is a single thread that dequeues
elements from this queue, which we shall call the Master thread. In short, a
user thread inserts a request into the main queue. The Master thread is contin-
uously attempting to dequeue requests from the main queue. When it obtains
a request, it finds the node at which this value is to be inserted and hands
over the value to the appropriate ElementInserter. The ElementInserter now
performs the actual insertion of the value. Since values are not queued at an
ElementInserter, there is no question of splitting a queue. This is explained in
greater detail using our implementation.

First, we would like to introduce the Nodes present in the queue. Though we
have used the term Node again, these nodes have a different set of fields, as
shown below.

public class Node {
volatile int value; // Value held by the node
volatile AtomicReference<Node> next; // Next node in the queue
volatile int enqTid;
volatile AtomicInteger deqTid;
volatile boolean isInserted; // Set once the node has been inserted into the BST

// or it has been decided that an insert cannot be done
volatile boolean insertSuccess; // The value is valid only once isInserted has been

// set. Then, a value of true indicates that the key
// has been inserted into the BST and a value of
// false indicates that the insert was not performed due
// to the presence of duplicates

The last two fields are necessary because we want the insert operation to be
linearizable and we want to be able to inform the user whether the insertion
succeded or failed. Then, the insert operation is very simple for a user thread -

/**
* Insert @param key into the BST
* @return true if the insert succeeded and false otherwise (failure
* because the key already exists in the BST)
*/

public boolean insert(int key) {
// Indicate that a thread is using the BST and wait till the
// BST is not being cleaned up
int sum = 2;
while(true) {

while(numLiveThreads.get() % 2 != 0);
if(numLiveThreads.addAndGet(2) % 2 == 0) {

break;
}
sum += 2;

}

wfq.Node node = new wfq.Node(key, 0);
Master.mainQueue.enq(node); // Push the node into the main insert queue

7

while(!node.isInserted()); // Wait till the node is actually inserted
// or it is determined that it cannot be inserted

numLiveThreads.addAndGet(-sum); // Indicate that this thread is done

return node.isInsertSuccess(); // The flag will be set by the thread that
// performs the insert or detects a duplicate

}

Deferring the explanation of numLiveThreads as we have been doing so far, we
can see that insertion just involves creating a queue node, inserting it into the
main queue and waiting till a signal that the insert is done is received. If we
did not care about insert being linearizable, we could simply return after en-
queueing the node. The processing, done by a different thread, will eventually
result in the value getting added to the tree. However, as we could not think
of a situation where non-linearizable inserts are useful, we decided to wait until
it is known that the value has been inserted so that the insert method "takes
effect" between its invocation and rsponse, as desired by linearizability. By the
time the user thread breaks out of the spin, the insert will be complete.

Now, let us trace what happens to a node once it has been enqueued. The
Master thread is running in an infinite loop, attempting to dequeue value from
the main queue. When a node gets dequeued, the following code gets executed
-

wfq.Node deqNode = mainQueue.deq();

Node tempNode = bst.root;
Node parentNode = null;

// Perform a standard BST search for the parent to which the insert
while(true) {

if(tempNode == null) {
if(parentNode.getElementInserter().nodeToInsert != null) {

// ElementInserter of parent is busy. Wait till it is free
while(parentNode.getElementInserter().nodeToInsert.isMarked());

}

// When the ElementInserter becomes free, the value it just inserted
// may have become the true parent of the node to be inserted
// Check for this case
if(deqNode.getValue() > parentNode.getValue()) {

if(parentNode.getRight() != null) {
parentNode = parentNode.getRight();

}
} else if(deqNode.getValue() < parentNode.getValue()) {

if(parentNode.getLeft() != null) {
parentNode = parentNode.getLeft();

}
} else {

// The value the ElementInserter was inserting is the value
// that the Master is holding now. Singal that the insert
// cannot be done to avoid a duplicate
deqNode.setInsertSuccess(false);
deqNode.setIsInserted(true);
break;

}

// Hand over the node to ElementInserter for insert
parentNode.getElementInserter().nodeToInsert.compareAndSet(null,

deqNode, false, true);
break;

}

8

// Control reaches here only if parent has not yet been found
// Continue BST search for it
parentNode = tempNode;
if(tempNode.getValue() < deqNode.getValue()) {

tempNode = tempNode.getRight();
continue;

}
if(tempNode.getValue() > deqNode.getValue()) {

tempNode = tempNode.getLeft();
continue;

}

// Found a marked node with the same key
// Attempt to unmark the node to insert the key
if(tempNode.isMarked().get()) {

deqNode.setInsertSuccess(tempNode.CASMarked(true, false));
if(deqNode.isInsertSuccess()) {

TreeSize.liveNodes.getAndIncrement();
TreeSize.deadNodes.getAndDecrement();

}
deqNode.setIsInserted(true);
break;

}

// Found an unmarked node with the same key
// Singal that insert cannot be done as it would result in a duplicate
deqNode.setInsertSuccess(false);
deqNode.setIsInserted(true);
break;

}

The documentation in the code more or less explains what is going on. A stan-
dard BST search is done to find the future parent of the node. During this
process if a marked node was found with the value to be inserted, it can simply
be unmarked. Also, in an unmarked node is found with this value, the Master
signals that the insert has failed.

If the Master finds a suitable parent, it waits for the mark on the nodeToInsert
field of the required ElementInserter to become false. This mark is true when
the ElementInserter is working on a node and becomes false when it is free.
When the ElementInserter becomes free, the Master has to do one additional
check to see whether the value the ElementInserter was working on should be
the parent of the node to be inserted, in which case, it shifts to that ElementIn-
serter. A single check is sufficient because an ElementInserter can be working
only on one value at a time and no thread other than the Master gives it work.

The ElementInserter is waiting for the Master to provide it with work as follows

boolean[] mark = new boolean[1];
wfq.Node head;
while((head = nodeToInsert.get(mark)) == null);

// Wait till a node has to be inserted

The ElementInserter is freed from this loop when the variable head is not null.
At this point, head will contain the node with teh value to be inserted. The
first check to be done is whether the value to be inserted is the same as that
of the parent, in which case, the insert should fail. This check could have been

9

done in the Master but is preferred to be done here as it reduces the bottleneck
at the Master. The Master checks some cases of duplicates but not all, hence
the need for this last validation

if (head.getValue() == parentNode.getValue()) {
// Node to be inserted has same value as potential parent
// Signal that insert failed as it would result in a duplicate
head.setInsertSuccess(false);
head.setIsInserted(true);
nodeToInsert.set(null, false); // Signal that a new node can be given for

insert
continue;

}

The remaining functionality depends on whether the parent of the node already
has a child or not. If teh parent already has a child, the current ElementInserter
can be passed on to the new child being created, as ElementInserters are only
required at nodes where inserts can happen. Then, the code is as follows -

if(parentNode.getLeft() != null || parentNode.getRight() != null) {
// Parent node has one child already
Node newNode = new Node(head.getValue());

// Create a new node for the value to be inserted
newNode.setElementInserter(this); // Pass on the ElementInserter to child
Node oldParent = parentNode;
parentNode = newNode; // Inform the ElementInserter that it has been

// passed on to the child

// Link the child to the parent
if(oldParent.getValue() > newNode.getValue()) {

oldParent.setLeft(newNode);
} else {

oldParent.setRight(newNode);
}

// Update statistics of the BST
TreeSize.liveNodes.getAndIncrement();
TreeSize.numNodes.getAndIncrement();

// Indicate that insert was successful
head.setInsertSuccess(true);
head.setIsInserted(true);

// Indicate that the ElementInserter can be given a new node to insert
nodeToInsert.set(null, false);
continue;

}

This code has a few subtleties that are of importance. First, the reader may
be confused as to why the ElementInserter receives a Node and creates a Node
with the same value. In fact, the node it receives is a Node of the queue and
the node it creates is a Node of the BST, to both of which we have unfortu-
nately assigned the same name. Second, the new node being created should be
assigned an ElementInserter before it is linked to the parent because once it has
been linked to the parent, it is possible that the Master will attempt to access
the ElementInserter of the newly created node because it may be the parent of
the next insert. Third, the linking of the parent to the child is the linearization
point for the insert operation because before this, the node cannot be discovered

10

in the tree by search, delet or another insert and after this, it is discoverable.
Lastly, since the same ElementInserter is being passed on to the child, no value
will be given to the child for insert until this insertion is complete, that is, the
nodeToInsert of this ElementInserter is set to null.

Suppose the parent had no children. Then, the work of the ElementInserter is a
little different. In this case, it has to spawn a new ElementInserter for the child
node. This can be seen in the code -

// Parent node does not have any children
// Create node to be inserted
Node newNode = new Node(head.getValue());

// Child node requires a new ElementInserter. Create it
ElementInserterThread newElementInserterThread = new ElementInserterThread(newNode);
newNode.setElementInserter(newElementInserterThread);
ThreadPool.execute(newElementInserterThread);

// Connect parent to child
if(parentNode.getValue() > newNode.getValue()) {

parentNode.setLeft(newNode);
} else {

parentNode.setRight(newNode);
}

// Update statistics of BST
TreeSize.liveNodes.getAndIncrement();
TreeSize.numNodes.getAndIncrement();

// Signal success of insert
head.setInsertSuccess(true);
head.setIsInserted(true);

// Indicate that the ElementInserter can be given a new node to insert
nodeToInsert.set(null, false);

As in the previous case, the ElementInserter for the child has to be created be-
fore it is linked to the parent and the linearization point of the insert operation
is when the parent is actually linked to the child.

A simple examination can show that these cover all possible cases for the in-
sert operation. We can see that once the ElementInserter has been assigned a
value, it performs a finite number of steps before it is ready to take another
value. Thus, in the Master, the wait for an ElementInserter to become free
must occur in a finite number of steps as only the Master assigns it nodes to
insert. Looking back at the code for the Master, we can see that this implies
that the once the Master has dequeued a node, the isInserted flag is set in a
finite number of steps. The FIFO ordering in the queue ensures that once a
user thread has enqueued a node, in time at most proportional to the number
of threads currently performing inserts on the BST, the node will get dequeued,
and a finite number of steps after that, the isInserted flag will be set, allowing
the user thread to return. Thus, the insert method is wait-free and bounded by
O(n)f(k) where n is the number of threads and k is the number of nodes in the
tree. The function f will be clarified shortly.

11

An alternate solution
There is another possible solution to the queue splitting problem, whcih we have
not yet implemented. However, we wish to present it here. We have already
reduced the difficulty in the problem in some sense: In reference to the problem
in our earlier solution, a worker had to realize that no-one would touch the par-
ent node’s queue before it assumed the "queue-splitting" process was complete.
Here no-one refers to any one of the N possible user threads ravaging the system.
However, now, we only have one master thread who is accessing the structure
and the same communication issue exists with N user threads replaced by one
master. This is much easier, right? Let’s have another look at it.

The possible problem was due to that fact that we wanted the abstraction map
of the system to reflect the fact that A, from our previous exposition, would
no longer exist as a valid queue, and B and C are two newly added ones. This
solution aims at doing exactly this. The master has a certain perspective of the
system - the various queues present in it currently. It wishes to update its view
every time it starts a new insert operation. So, if we assume there is a list of
such queues, the master has a read of it before beginning any insert. In this
process it notifies itself of the newly added queues in the system. Suppose each
queue had an associated flag exactly for this purpose, call it masterSawIt. So
when the master reads the list of queues, it sets this flag in all of them to be
true. This is a check for itself as well as for the other worker threads who are
waiting for a response from the master. The master in the process of scanning
the list of queues knows which node will become the parent of the new node to
be inserted and puts the node into the appropriate queue.

What are the workers doing. Their job is again to read their queues, pull out
the head node and then split the queue. How does the splitting work here. We
have created two new queues. If we know that subsequent inserts will happen in
them and not in the old one, we are done. We can re-read the old one once and
be sure that newer inserts will end up in one of the newly created queues. From
the old example, we would create new queues B and C and put them into the
list of queues with their masterSawIt bit as false and wait till they become true.
We can give some wait-free gaurentees here by placing suitable restrictions on
the size of the tree at any point of time which can be governed by our choice of
when to cleanup the structure. The consequence of master scanning the entire
list of queues once before every insert is that this solution would not scale but
in cases of small sized trees with high levels of contention, it is probably a good
choice.

Let us complete the logistics of the solution. Once the workers know that the
master has updated its view, it must split up the queue. But it cannot allow
new guys from the master into the new queues until the split is complete as
otherwise there would be overtaking. So, we need one bit which is toggled by
the workers. Every queue has another flag workerIsReady which the worker
will set to true only after the queue split is done in the case of an ongoing insert,
but will be true if the node is currently idle. The master on the other hand spins
until the target node is free and then pushes the new element into the queue.
This is again wait-free as we are holding every insert wait-free and this wait

12

would be for at most one insert. The other detail is that the list which holds
the queues would also have to be wait-free so that all workers can add entries
to it in a wait-free manner.

This solution clearly1 works. The downside is the waiting, which although is
bounded, may be large and hence other solutions like the one we have imple-
mented would work better for larger cases. But as an academic exercise at least,
this solution can catch a place somewhere, perhaps in a textbook! But it is clear
that this solution is inherently more parallel than the one implemented by us,
but would not scale. One should choose the solution and implementation based
on the requirement. After all, r-bounded wait-freedom with r →∞ is just silly!

The Clean-up
The construction we provided provides wait-free insert, delete and search op-
erations. What more could we want! There is the fact that our deletions are
logical deletions, and some-time, it would be nice to physically delet the nodes
in order to avoid traversing too many dead nodes. Since our operations are all
wait-free, it seems reasonable to once in a while do a messy cleanup operation.

For this, we needed a mechanism to track the number of live and dead nodes in
the tree, which explains why all our operations were updating those very statis-
tics. We have a clean-up thread that is constantly monitoring these statistics,
and when the fraction of dead nodes crossed some threshold (a tunable param-
eter), fires a clean-up operation.

Since clean-up would require considerable refactoring of the tree, we would like
to lock the tree during clean-up, which is what makes our BST "near wait-free",
rather than wait-free. For this "locking", we need to ensure that no new op-
eration starts once the cleaner thread decides that a clean-up is necessary and
after this indication has been given, the cleaner thread must wait for all pending
operations to finish before starting a clean-up. To know how many pending op-
erations are there, one possible idea was to have every user thread increment a
counter when it starts an operation and decrement the counter when it ends the
operation. Suppose a different field was used to lock the BST, we would have a
problem because if a user thread saw that the BST was unlocked and then tried
to increment its counter, if the cleaner thread checked the counter in-between
the two operations, it would assume there is no user and proceed with clean-up.
The user thread too would assume that no clean-up is going on, as it saw the
BST unlocked and hence proceed, which would very likely result in incorrect
execution. The counter cannot be incremented before a user thread knows that
the BST is unlocked because then any thread that comes in would increment
the counter and only those that have seen the BST locked would wait. Thus the
counter would no longer be indicative of the numebr of pending user operations.

The solution to this problem is surprisingly simple. We still use an atomic
integer, but we use the parity of the integer as an additonal bit of informa-
tion to decide whether the BST is locked or unlocked. This atomic integer is

1Probably, one should be more careful with his words!

13

the slightly inappropriately named variable numLiveThreads. The semantics of
numLiveThreads is as follows. If the value is even, the BST is unlocked and
if it is odd, the BST is locked. Further, a value of 1 indicates that there are
no pending user operations and a clean-up is in progress, a value of 0 indicates
that there are no pending user operations and no clean-up is in progress and a
any other value indicates the presence of pending user operations. As we saw
earlier, ever user operation starts with -

int sum = 2;
while(true) {

while(numLiveThreads.get() % 2 != 0);
if(numLiveThreads.addAndGet(2) % 2 == 0) {

break;
}
sum += 2;

}

As long as numLiveThreads is odd, the user thread must wait as the BST is
locked. When it breaks out of that loop, it performs as it performs an ad-
dAndGet of 2, the value it obtains has the same parity as the previous value
of numLiveThreads. If this value is still even, the operation may proceed. If
clean-up is tuned to happen with high frequency, it is possible that a user thread
adds to numLiveThreads more than once. Thus, the local variable sum is used to
store the exact amount this thread has incremented numLiveThreads by. At the
end of the operation, the thread nullifies the increase it caused by performing

numLiveThreads.addAndGet(-sum);

Now consider the clean-up thread. When it decides that a clean-up has to be
done, it simply does

// Indicate that the tree is going to be cleaned up
bst.numLiveThreads.getAndIncrement();
// Wait till pending user threads have completed their operations
while(bst.numLiveThreads.get() != 1);

Since the cleaner thread just increments numLiveThreads, the parity is changed.
Any new operations entering now will see that numLiveThreads is odd and
hence will wait. Any operation that completed its addAndGet earlier (the
only other possibility as both operations are atomic) will proceed to comple-
tion and the clean-up thread will wait for it because such a thread must have
left numLiveThreads at a value of at least 2, since no thread decrements num-
LiveThreads by a value different from what it increments it by. If the value
of numLiveThreads becomes 1, it means that all oending user operations are
done because a user thread only decrements the value it incremented. Thus
the value of numLiveThreads can become 1 only when the value added by all
threads except the cleaner thread have been removed. Thus, when the cleaner
thread breaks out of this loop, it is safe to perform a clean-up.

14

The code for clean-up has not been presented here for the sake of brevity. Es-
sentially, all ElementInserters are stopped. Then, a BFS traversal is done on
the tree and all unmarked nodes are inserted using an AVL-tree insert into an
initially empty tree to obtain a balanced binary search tree containing only the
live nodes. Following this, ElementInserters are created for all nodes that have
less than two children. Then, the lock on the tree is released by performing

// Indicate that clean-up is over and user threads may use the BST
bst.numLiveThreads.getAndDecrement();

Since this would set numLiveThreads to 0, all waiting user operations will now
resume.

One point to note is that the frequency of clean-up affects two things. Whenever
a clean-up occurs, all user operations are made to wait, albeit not for other user
operations. However, this is what makes the data structure deviate form the
ideal wait-free BST. On the other hand, a clean-up results in balancing of the
BST, which would reduce teh time taken for future inserts (recall the function
f that was used when bounding the number of steps an insert would take - it
depends on how balanced the tree is as insert involves O(log h) operations after
dequeueing the node, where h is the height of the tree).

Testings

Future Work
Some more exploration needs to be done with this idea, including

• Checking the alternate solution for insert, both in terms theoretical guar-
antess, scalability and feasibility in terms of implementation

• Improving the efficiency of the clean-up operation

Possibly there may also be mechanisms that result in more parallel, but scalable
solutions for insert and clean-up.

15

