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Abstract—The proliferation of the Internet has resulted in a
rapid increase in the production of published information. This
has led to the emergence of a large class of machine learning
problems where the challenge has shifted from scarcity of data
to lack of labelled or reliably labelled data. Such tasks are
not amenable to inductive learning techniques. In these and
many other situations, transductive learning is good alternative.
The aim of this project is to compare the propagation of
labels in a true underlying graph structure and a hypergraph
representation of the data, derived purely from non-graphical
attributes. This project focusses on identifying points whose labels
are particularly important for classification, a result which could
be used in active learning.

I. INTRODUCTION

RANSDUCTIVE is a method of reasoning from specific

training cases to specific test cases, in contrast to
inductive learning where the aim is to obtain a generic
functional mapping from an input space to an output space.

A simple situation in which transductive learning techniques
would be preferred is a problem for which the training
data and many test instances are available a-priori but
the number of labelled training instances given is far less
than the number of available unlabelled test instances.
As most induction methods rely on the availability of an
extensive, representative training set, an inductive learning
function is unlikely to be able to capture all the facets of
the input space. Further, in such a problem, as the test
set is known beforehand, a transductive algorithm, which
by its nature would be tailored to the specific instances
available, would possibly construct a richer model than that
which a generic (inductive) approach would create. Hence,
the transductive algorithm could be expected to perform better.

Another situation in which transductive learning could be
useful is a binary classification problem in which inputs
naturally tend to cluster into two groups, based in their class
labels as seen in figure 1.
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Fig. 1. Inputs cluster based on classes

Active learning is a special case of semi-supervised machine
learning in which a learning algorithm is able to interactively
query the user (or some other information source) to obtain
the desired outputs at specific data points. This project is
aimed at identifying important points, which can be used for
such queries, when the data is represented using a graphical
model. One of the main benefits of such a representation is
that it aids visualization of the data. Further, many properties
of graphs such as degree, connectedness or clusters provide
rich information that would otherwise remain latent. It
is intended to compare the performance of graph-based
classification on a true underlying graphical structure and an
induced graphical structure for the same dataset. This would
enable creation of a general mechanism by which a graphical
representation can be created for a dataset and suitable points
can be identified from thsi as being important from the point
of view of active learning.

II. DATASET AND DATA MODEL

The dataset used for this project was the Genes dataset
obtained from http://pages.cs.wisc.edu/ dpage/kddcup2001/.
This dataset is about genomes of many animals that have
been completely sequenced. Interest within bioinformatics is
shifting somewhat away from sequencing, to learning about
the genes encoded in the sequence. Genes code for proteins,
and these proteins tend to localize in various parts of cells
and interact with one another, in order to perform crucial
functions. The present data set consists of a variety of details
about the various genes of one particular type of organism.
The aim of this project if to predict the localization of the
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gene. The other information provided includes the class of the
gene/protein, whether it is essential, the phenotype (observable
characteristics) of individuals with a mutation in the gene
(and hence in the protein), the motif, the chromosome, and
the other proteins with which each protein is known to interact.

The interactions result in a natural graphical representation
of the genes on which diffusion techniques could be
experimented. It is reasonable to assume that genes connected
in this network are likely to have the same localization as
genes are more likely to interact with genes in the same
region of the cell, which is the localization being predicted.

All the relational attributes of the genes were discrete-valued.
Thus, a natural graphical representation using these is a
hypergraph. In mathematics, a hypergraph is a generalization
of a graph in which an edge can connect any number of
vertices. Formally, a hypergraph H is a pair H = (X,E) where
X is a set of elements called nodes or vertices, and E is a set
of non-empty subsets of X called hyperedges or edges. Here,
genes having the same value for an attribute are made to lie
on the same hyperedge of the hypergraph.

The relational attributes of a gene, in some cases take
multiple values. Thus, the encoding used is to have a binary
attribute corresponding to each value of each of the above
attributes. Thus, for every such derived attribute, there
would be 2 possible hyperedges - the Yes edge and the
No edge. Only the Yes edges were included in the final
model, because othwrwise, it appears to imply that two
genes that do not have a particluar value for an attribute
are as correlated as two genes that have the same value.
This is not really true as some of the attribues can in fact
take a up to a couple of hundred values (specifically the motif).

III. CENTRALITY MEASURES

A. Degree Centrality

The degree of a node in a graph is one of the most intuitive
properties used to determine its importance. While there
are issues with using degree to detect influential points, it
provides a simple first-cut solution.

The degree of a node in a graph is well-defined. For the
attribute-hypergraph, a slightly modified degree calculation is
used in this project. Let the weight of a hyperedge be the
number of nodes participating in it. Then, the degree of a node
is (sum of weights of hyperedges it participates in - number
of hyperedges it participates in). The intuition behind this
defintion is as follows. The degree is indictive of the number
of nodes that can be reached in one step. A node can reach any
node on any hyperedge it is a part of in one step. The weight
of a hyperedge is thus indicative of teh numebr of nodes
reachable using that hyperedge. The number of hyperedges
the node participates in is subtracted because this node itself
adds 1 to the weight of all the edges it participates in.

B. PageRank or Eigenvector Centrality

Eigenvector centrality is a measure of the influence of a
node in a network. It assigns relative scores to all nodes
in the network based on the concept that connections to
high-scoring nodes contribute more to the score of the node
in question than equal connections to low-scoring nodes.
Google’s PageRank is a variant of the Eigenvector centrality
measure.

The eigenvector centrality for node d is given by
1 1
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where a; ; is the entry in the adjacency matrix corresponding
to vertices ¢ and j.

The defintion can be extended to hypergraphs as well. The
relevant equations then are,
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where W is the matrix whose entries correspond to the weights
of edges between two nodes and c; and c, are the centralities
of the node x and the edge y respectively.

C. Relative Coverage

Footprint-based retrieval is a novel retrieval technique that is
employed in case base systems today. The idea that is central
to this method is a measure called relative coverage, which
is used to obtain a subset of the case base (called footprint
set) that provides the same coverage as the case-base as a
whole. We first describe that concept of relative coverage in
the context of case base retrieval systems and then present
the adapted version that we have used in our implementation.

In the context of Case Base Systems

Consider a set of cases, C, and a space of target problems,
T. A case, ¢ € C, can be used to solve a target, ¢t € T, if
and only if two conditions hold. Two important competence
properties are the coverage set and the reachability set which
are defined as follows.

Coverage Set(c) = {c|¢’ € C and ¢ solves ¢’}
Reachability Set(c) = {c'|¢’ € C and ¢’ solves c}

The size of the coverage set of a case is only a measure
of its local competence. For instance, case coverage sets can
overlap to limit the competence contributions of individual
cases, or they may be isolated and exaggerate individual
contributions. It is actually possible to have a case with a
large coverage set that makes little or no contribution to global
competence simply because its contribution is subsumed by
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the local competences of other cases. At the other extreme,
there may be cases with relatively small contributions to make,
but these contributions may nonetheless be crucial if there are
no competing cases.

Relative Coverage(c) =

1

Z |[Reachability Set(c’)|
¢’ €Coverage Set(c)
For a true picture of competence, a measure of the coverage
of a case relative to other nearby cases, is needed. This is
where relative coverage comes in. It essentially weights the
contribution of each covered case by the degree to which
these cases are themselves covered. The importance of
relative coverage is that it provides a mechanism for ordering
cases according to their individual, global, competence
contributions.

In the context of our dataset

In both our classifying techniques (as will be elaborated in
a later section), we use the interaction data to recursively
obtain the label of a node from the label of its neighbors.
So, the preprocessing step can be viewed as the construction
of the footprint set of nodes from an input training data. In
the context of our interaction graph G = (V, E), the above
definitions can adapted as follows:

Coverage Set(v) = Reachability Set(v) = N (v)

. 1
Relative Coverage(v) = Z Reachability Set(u)]

u€Coverage Set(v)

1
- Z degree(u)

u€N (v)

Once this is calculated for every node, we just have to pick the
k nodes with the highest relative coverage values as the most
influential nodes in the graph and use them in our classification
algorithms.

IV. CLASSIFICATION ON A GRAPH

As the data model used was graphical, suitable classification
methods were needed that utilize structural properties of a
graphical representation to classify points. In this regard, the
following mechanisms were considered -

o Graph Diffusion

« Label Propagation

A. Graph Diffusion

This is an adaption of the method in [3]. the probabilistic
formulation of the classification problem and uses a relaxation
labeling technique. Given a graph G where each node d is
an input point and the set of labels C, this thenique allows
classification of nodes based on a prior probability 7(d, c),
which is the prior probability of node d belonging to class c,
using information from the neighbourhood N (d) of node d.

Let ¢(d,c) represent the probability of node d belonging to
class ¢, given the graph G and the prior, 7(d, c). Assuming
that the label of a node (as a random variable) is conditionally

independent of the labels of other nodes in the graph given
the labels of its immediate neighbors (MRF assumption),
¢(d, c) only depends on the values of 7(d, ¢), ¢(d’, c) for all
nodes d’ € N(d) and the probability that a node d belongs
to class ¢, given that it’s neighbour belongs to class ¢’. This
probability can be treated as independent of the specific node
d and d’ involved, in which case, it is sufficient to have the
probability (¢, ¢’) which is the probability that a node has
label ¢, given that it’s neighbour has label ¢’.

For tractability, the additional independence assumption that
there is no direct coupling between the prior probability of
a node belonging to a particular class and the labels of its
neighbors, the following central equation holds.

é(d,c) = m(d, c) * H (Z (p(d', ") * x(c, c’)))

d'eN(d) \¢'eC

This is because Y . (¢(d’, ') * x(c,c’)) is the probability
of node d being in class ¢, considering all possible label
assignments to its neighbour d’. Treating the labels of these
nodes and the prior as independent contributors towards the
probability of the label of the node of interest, the above
equation is obtained.

Then, ¢(d,c) can be computed in an iterative RL manner
as follows. Let ¢(")(d,c) represent the probability of node
d belonging to class c at the end of round 7. Then,

e, C')))

In the above update rule, x is also assumed to vary. This
is because no a-priori information in available about the
the probability of a node d belonging to class ¢, given that
it’s neighbour belongs to class ¢’. This information is also
inferred from the graph by a smoothed estimator based on
the frequencies of edges tentatively labeled with ¢, ¢’ in the
previous round (using Laplace smoothing).

¢"(d,c) =m(d,c)x [] (Z(cb”(d’,c’)*x’“

d’eN(d) \c'eC

B. Label Propagation

Label propagation is a popular semi-supervised classification
method.The basic idea of label propagation is to use random
walks in order to propagate labels through the graph. We
assign a normalized vector F; to every node ¢. The jth
component of F; represents the probability with which node @
belongs to class j. Also, a weight matrix is used. Weight w;;
is the fraction of hyperedges containing both node 7 and node
7. The label propagation algorithm then iteratively re-weighs
the F'-vectors for all nodes till convergence.
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Algorithm IV.1: ITERATIVE LABEL PROPAGATION()

repeat
for each v € V
do
F, = Z(mu)EE Wy By
Normalize(F,)
until convergence or maxIterations

A more detailed treatment of label propagation on graphs
may be found in [2].

When executing the algorithm in practice, we often introduce
a stepping factor 7. Instead of adding the weighted sum of
F vectors across neighbours with a weight of 1, we take a
slightly shorter step which is a fraction y of the earlier step.
This helps prevent overfitting, since we do not take sudden
steps towards a local optimum.

Fv:'y Z wquv (6)
(vyu)EE

V. PREPROCESSING OF THE DATASET

The given dataset contained a combination of the relational
attributes and the interaction data in the file Full_file.data.
Thought the relational data was separately present in the
file Genes_relation.data, the data format in this file was not
convenient for programmatic usage. Despite the fact that some
genes had more than one value for some nominal attributes, a
binary representation was not used. Also, there was no clear
demarcation between the values of one attribute and those of
another. Thus, the required relational data was extracted from
Full_file.data and stored in UsefulRelationData.txt. During
this process, the attribute values were replaced by more
concise forms if needed and converted to a standard form
(for example, in some records attribute values were enclosed
in quotes, whereas in other they were not) to enable simple
parsing in the programs. The interaction data could be used
as in from Genes_interaction.data.

The next stage involved creation of the hypergraph using the
relational attribute values. For those nominal attributes for
which each node had only one value, a hyperedge could be
created for each value and a node included in it if it had that
value for the attribute. For those nominal attributes that had to
be encoded as binary attributes, one for each possible value,
as a node could potentially take multiple values, an edge was
created for each such value and all nodes that had a ’Yes”
corresponding to the binary attribute (which implied that one
of the values for that nominal attribute for that node was the
value corresponding to the hyperedge) were included in the
hyperedge. Intially, for each such attribute, a hyperedge was
created for the "No” instances as well but this was discarded
because it resulted in every node becoming a neighbour of
nearly every other node (where a neighbour of a node is any
node that is present in at least one hyperedge this node is a part
of). This can be explained by the fact that one of the nominal
attributes, the motif, takes a couple of hundred possible values,

but a single gene typically has only a few motifs, generally
just one. Thus, using every such "No” edge, almost all genes
would become neighbours, which does not indicate the true
nature of the relation between genes.

A. Distribution of Node Properties in the Dataset

From the graphical representation, it is possible to observe
trends of node properties such as degree and importance (as
calculated by a form of PageRank).

The following is the distribution of various classes in the
dataset -

Class Count
Nucleus 366
Plasma membrane 43
Peroxisome 10
Endoplasmic Reticulum 43
Cytoplasm 192
Cytoskeleton 58
Integral membrane 3
Mitochondria 69
Vacuole 18
Golgi 35
Transport vesicle 17
Cell wall 1
Lipid particles 1
Extracellular 2
Endosome 4

Due to the heavy class skew and the large number of classes,
multi-class classification was difficult on the dataset. The
large fraction of points in the “nucleus” class prompted
us to attempt one-vs-rest classification on this class as an
alternative test-bed for the different experiments.

Some other properties of the data distribution observed are
as follows. The distribution of the degree of the nodes of the
graph (true underlying graph obtained from interaction data)
is shown in figure 2.

Fig. 2. Degree distribution of true graph structure

Since many points are of low degree and only a few points
are of high degree, it appeared reasonable to treat high-degree
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points directly as important points, without searching for the
more exact influence maximization criterion of number of
neoghbours not already covered by a selected node.

The distribution of degrees of the nodes of the hypergraph,
calculated as decsribed earlier, are shown in figure 3.

Fig. 3. Degree distribution of induced hypergraph

Again, there appear to be sufficiently few points of very high
degree, thus enabling it to be directly used as a centrality
measure.

The distribution of PageRank of the nodes of the hypergraph
is shown in figure 4.
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Fig. 4. PageRank distribution of induced hypergraph

The distribution of relative coverage of the nodes of hyper-
graph is shown in figure 5.

Fig. 5.

For a basic benchmark to compare the classification results,
the Naive Bayes classifier from Weka was used. This obtains
an accuracy of 61% on the train set. The Naive Bayes
classifier was chosen for comparison because it was one
of the base classifiers that was designed to work well with
nominal attributes and missing values.

VI. EXPERIMENTS

Firstly, the classification was done on the true graph, using
Graph diffusion, by selecting the training set using degree as
the centrality measure. To check the performance, this was
compared with the choice of a random training set. Figure 6
shows the results for different train set sizes.
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Fig. 6.

It was observed that for small training set sizes, choosing the
training points using degree centrality provides a better result.
This confirms the fact the fact that degree centrality can be
used as a criterion to select points to query for labels for
active learning, since the query set is expected to be small.
For larger training set sizes, the degree criterion may not work
well because it is probable that points of intermediate degree
are neighbours of each other. Thus, the set of important
points may not be well-spread out in the graph. However, this
can be expected to happen with a random choice of train set,
hence the performance of a random train set scales better.
However, as the aim of this project is to identify training sets
for active learning, which are preferably small, the train set
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obtained using centrality is preferable.

Following this, a comparison was done between graph
diffusion on the graph and label propagation on the
hypergraph (the methods which worked better on the
respective representations) for One-vs-rest classification for
the nucleus class, using a trainging set based on degree
centrality. The results are in figure 7.
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Fig. 7.

It was observed that for most training set sizes, the results on
the hypergraph were much better. Thus, the hypergraph model
appears to be a suitable graphical model for the dataset, at
least in the context of active learning. Further experiments on
different centrality measures were then restricted to this model.

The next set of experiments involved the comparison of the
different centrality measures - degree (as defined above for a
hypergraph), PageRank and relative coverage. The results are
displayed in figure 8.
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Fig. 8.

It was observed that the best results are obtained using
PageRank centrality to obtain the train set. PageRank
centrality was, in fact, expected to perform well because
it is designed to measure the importance of a node based
on its link structure. Also, relative coverage was expected
to perform well because it attempts to decrease the overlap
between the influence region of the different points in the
train set. In this case it has not resulted in a significant

improvement over degree centrality. This is probably because,
as there are few nodes of high degree, their coverage areas
are possibly sufficiently non-overlapping, without an explicit
check for that property.

The same set of experiments were then repeated using the
original class labels, that is a full 15-class classification was
done. The results for this are shown in figure 9.
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Fig. 9.

On this, it is observed that PageRank did not perform as well
as expected. This is possibly because there are too few points
with sufficient;ly high PageRank, hence when only these are
chosen (very small training set), PageRank performs well
but as the number of train points is increased, more non-
authoritative points get selected and since label diffusion is
being used, important points now have to contend with a large
number of weak points to diffuse the correct label. On the
other hand, relative coverage works very well, as expected.
This is because, in multi-class classification, with such signif-
icant class skew, it is important that as many test points as
possible are well-covered. This experiment demonstrates the
importance of truly performing an influence maximization, as
against extreme approxiamtions such as the degree.

VII. CENTRALITY INCORPORATING CLASS IMBALANCE

The general centrality techniques considered so far did not
take class information into account. Since there is considerable
class imbalance, it is reasonable to assume that there is a
need to incorporate class imbalance while picking important
training points.

Two proposed mechanisms to handle this -

A. Incorporating class imbalance into the centrality compu-
tation

In this method, after the appropriate centrality measure is
computed, the centrality value is boosted by the scarcity of
finding a training point of that class. Consider any training
point with centrality score s. If its class label is ¢, let the
probability of a point from the dataset belonging to class ¢ be
p(c). Then the modified centrality score becomes ﬁ.

This method was attempted using relative coverage as a base
centrality measure and the classifcation results are as follows
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NumlInTrain | Acc(%)

100 0.92
200 4.08
300 0.0
400 20.78
500 5.25
600 39.31
700 96.3
800 95.16

It can be seen that there was considerable variation of
accuracy and the results were in general not appreciable. This
is probably because there are a lot of classes with only 1
member. Thus when the score is divided by the probability
of such a class, it shoots up and becomes the most important
node. However, this point would not be helpful in classifying
other points as there are no other points form its class.
Thus, for a small train set size, not enough truly important
points are captured, resulting in very poor performance.
Whereas for a large train set, Since the scarce class points get
forcibly included in the train set extremely high accuracies
are obtained.

It can be observed that if the points are sorted according to
this centrality measure, they are almost sorted in descending
order of scarcity of their class, which is not desirable. Thus,
another method was experimented.

B. Sample incorporating class scarcity

Since it was observed that directly incorporating the class
probability into the centrality measure was not helpful, the
original centrality scores are used. However, when choosing
important points, while traversing the nodes in decreasing
order of centrality, for any node d, with label ¢, d is included
into the training set with probability 1 — p(c).

This method was experimented using relative coverage as the
base centrality measure and the results were very impressive.
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Fig. 10.

It can be seen that the performance is significantly better
than the train-set accuracy of Weka’s Naive Bayes classifier
(known to be 61 %).

Thus it can be concluded that a combination of the information
from the structural properties of the graphical model - the
attribute hypergraph, captured using relative coverage central-
ity and the class distribution results in a reasonably strong
classifier, that is designed for active learning.

VIII. FUTURE WORK

A possible extension of this project is to use the above
information to detect noise in class labels. Some possible
ideas for this are -

o In the graph diffusion classifer, x(c,c’) is the fraction
of edges between points of classes ¢ and ¢’ respectively.
Thus, intuitively, x values can be treated as indicators
of the probability of an interaction. If all interactions of
a node are low-probability ones, it is quite possible that
the node’s label is incorrect. However, this assumption
has a shortcoming. Any node interacting with a minor
class node will always have a low x value. So some
normalization based on scarcity of points belonging to a
particular class is necessary. One possibilty is to divide
the x value by the number of points in the class.

« In the Label Propagation classifier, each node has an F
vector. Each component of the F vector denotes prob-
ability of belonging to the corresponding class. The F
vector is modified through the iterations of the algorithm.
Finally, the class with highest probability, as indicated by
the F vector is chosen as the label of the point. Consider
look at difference between highest and second highest
values in F for a node. If that difference is less than some
threshold, it is probably a noise point. This is because
there are two equally contending classes for the label of
that point.
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